% exercise 4.1.5 % Number of samples N = 1000; % Mean mu = [13 17]; % Standard deviation of x1 s1 = 2; % Standard deviation of x2 s2 = 3; % Correlation between x1 and x2 corr = 0; % Covariance matrix S = [s1^2 corr*s1*s2;corr*s1*s2 s2^2]; % Number of bins in histogram NBins = 20; %% Generate samples from the Normal distribution X = mvnrnd(mu, S, N); %% Plot scatter plot of data mfig('2-D Normal distribution'); clf; subplot(1,2,1); plot(X(:,1), X(:,2), 'x'); axis equal; xlabel('x_1'); ylabel('x_2'); title('Scatter plot of data'); subplot(1,2,2); [n, x] = hist2d(X, NBins); imagesc(x(1,:), x(2,:), n); axis equal; axis xy; colorbar('South'); colormap(1-gray); xlabel('x_1'); ylabel('x_2'); title('2D histogram');