#################### # Exercise 4.1.4 #################### rm(list = ls()) # Clear work space # Library for multivariate normal distribution library(MASS) # install.packages("MASS") ?mvrnorm # Number of samples N <- 1000 # Mean mu <- c(13, 17) # Covariance matrix S <- matrix(c(4, 3, 3, 9), nrow = 2, byrow = TRUE) # Generate samples from the Normal distribution X <- mvrnorm(N, mu = mu, Sigma = S) # Inspect the dimensions of the matrix containing # the generated multivariate normal vectors. dim(X)