Midterm B Ungraded and not mandatory April 27th, 2023

Midterm date: April 27th, 2023

Course title: Introduction to reinforcement learning and control
Course number: 02465

Aids allowed: All aids allowed

Midterm duration: 2 hours

Weighting: The exam is divided into 3 parts:
e Multiple-Choice questions
e Conceptual questions
e Programming questions
The overall scores of each part contribute roughly equally towards the overall result. Each
question in each part contribute equally towards the score of that part.
Part I: Questions 1-4 are multiple choice. The score of a correct answer is 3 points. The
score of an incorrect answer is —1 points. The score of option E or blank is 0 points.
Part IT and part III: Each completed sub-task contribute towards your score.
Preparing your handin: The three parts are prepared as follows:
Part I: Edit the file irlc/exam/midterm2023b/multiple_choice_answers.py . Don’t include calcula-
tions. Only answer with 'a*, '8*, ¢, ', 'E'.
Part II: Create a PDF file with your answers and justifications.
Part ITI: Program your answer in the .py-files indicated in the question and run
irlc/exam/midterm2023b/midterm2023b_tests_grade.py tO generate your .token -file.
Handing in: To hand in, you should upload the files:

e The irlc/exam/midterm2023b/multiple_choice_answers.py -file with your answer to part I
e The .par -file with your answers to part IT
e The .token -file with your answers to part III

e The irlc/exam/midterm2023b/question_tdo.py source file containing your solution

e The irlc/exam/midterm2023b/question_mdp.py Source file containing your solution

Note on part II: The main quantities asked for are highlighted as f(x) . Answer
unambigiously, concisely, and if applicable with algebraic simplifications. Your final result
must be clearly indicated at the end of your answer: f(x) = 3sin(z) . To get credit, you
must state the relevant theory and equations, and all relevant calculations must be included.
Credit is not given for answers with missing or erroneous justifications.

Note on part III: To get started, move the folder iric/exam/midterm2023b from the .zip file
to the corresponding location in your existing exercise directory. The .py source files must
be reproducible and readable so that someone else can run and fully understand your
solution. You can freely use the iric -toolbox (including solutions) and the packages we
have used in the course, but you must include additional code you write during the exam
or have prepared beforehand in the source files listed above. The source files must not be
renamed. The .token file contains your results and must be up to date with your source files,
i.e., generate it just prior to handin. In the case they differ, the .token file takes precedence.
Credit is given for correct implementations defined by the problem description. The points
in the .token file name is computed from the public tests, and might not correspond to
overall correctness.
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Part I: Multiple-Choice

QUESTION L ittt ittt ittt ittt eeneneneesasasasasnssssssssssssosososasasasssnsssenas
Which one of the following options are correct?

A. Tt is true that ) 7(als)g=(s, a) = vx(s)
It is true that max, w(a|s)gr(s,a) = v.(s)
Sarsa is an example of an off-policy reinforcement learning method

@-learning can only be applied to problems which eventually terminate

=9 aw

Don’t know.

L =T v o o T
Consider an infinite-horizon Markov Decision Process (MDP) where the actions can take values in a set
A, the states can take values in a set S, and rewards can take values in a set R. All of these sets are
finite, you can assume 0 < v < 1, and 7 stands for any policy.
Which one of the following statements are true in general?

A. vr(s) < oo (i.e., vy is finite for all policies )

B. vz(s) > minR
C. p(s,r|s,a) #0 for all 5,8 € S, a € A and r € R where p is the transition probability.
D. E [Rt+1\5t = S,At = CL} = q*(S,CL)
E. Don’t know.
QUESTION B ittt ittt ettt teeenteeeaseeensosensosonsosansosensossnsoseasossnsonsnss

Consider a k-armed bandit problem with & = 3. In time step ¢, the payoff of selecting an arm a €
{0,..,k—1}is:
re~N(p=q:,o?=0.64)

(i.e., the same type of reward distribution as in [SBI8| Chapter 2]). The values of ¢* are:

@ =-17 ¢ =-46, ¢ =03

Consider a fixed policy = which with probability 1 — € selects the optimal arm and with probability
€ = 0.1 selects arm a = 0, i.e. the one associated with ¢; above. What is the average per-step reward,
], of this policy?

ie. E;[R:
A —15
B. 0.065
C. 0.44
D. 0.1
E

. Don’t know.
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Figure 2: An example gridworld environment with Q-values

Part II: Conceptual questions

L =T v Lo o T T
Suppose that Q-learning (using discount factor v = 0.9 and learning rate @ = 0.8) is applied to the
Gridworld MDP shown in fig. [2l The living reward is 0, and the dynamics is deterministic. The agent
can only move to a terminal state from one of the two states to the right (with the inserted squares).
and the current state s; of the agent is as indicated in the figure.

(a) The agent has 4 possible actions in the current state. It is possible the next state s;y; of the agent
will be the one just to the north of it’s current location. Express, as a function of the learning rate
€, the probability that this will be the case .

(b) Consider again the state shown in fig. [2| and assume that the agent takes the action east, after
which the agent transition to the state immediately to the east of its present location.
This transition will update the Q-value Q(s¢, east) indicated by the yellow question mark. What
will be the new value of Q(s;,east) 7

(c) Assume we keep the exploration rate fixed at e = 0.1, but that the learning rate decrease as a %
to satisfy the usual convergence criteria for Q-learning ([SB18, Equation 2.7]). After convergence,

what is the @-value indicated by the red cross?
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Table 1: Sequence of arm-selections and rewards used to train the bandit algorithm

L0 1] o o T
Consider the simple bandit algorithm described in [SB18, Section 2.4]. Suppose there are k = 3 arms,
labelled as A € {0,1,2} and that table [1| contains the outcome of trying six actions and observing the
resulting reward

(a)
(b)

Given these observations, what is Q-value associated with arm a =1, Q(1) ?

For this question, consider the non-stationary bandit algorithm described in [SB18, Section 2.5]
which uses the modified update rule:

Qn+1 = Qn + « [Rn - Qn]

where @, is the Q-value of the selected arm and « is the learning rate. Assume this bandit algorithm
is still trained on the data in table Determine the @-value of arm a =2, @Q(2) as a function of
a.

Consider again the non-stationary bandit algorithm described in [SB18| Section 2.5]. Assume we
exclusively focus on a specific arm a. During training, we try this arm m times, and observe m
corresponding rewards Ri, Ry, ..., Ry

The non-stationary bandit algorithm initialize the Q-values to Q1(a) = 0 by default, however, we
consider an alternative method which initialize them to Q1(a) = ¢ for a constant g.

The initial value of ¢ will affect the final value of @Q,,41(a) after training on the m rewards, and
therefore we write the final Q-values after training as Q,+1,4(@). Determine an analytical expression

of h(g,m) defined as the difference:

h(q,m) = Qerl,q(a) - Qm+17q:0(a)-

The expression should be simple, i.e. not involve sums of many terms etc.
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Part III: Programming questions

L =T v o) o T A
To solve this question, you should edit the file iric/exam/midterm2023b/question_tdo.py . In this problem,
we will consider the TD(0) method described in [SB18|, Section 6.1]. In particular, we will consider how
TD(0) change the value function as a result of a single episode as discussed in [SB18, Example 6.1].

To this end, recall that the TD(0) algorithm, as defined in the beginning of [SB18, Section 6.1], is
comprised of:

e Initializing the value function v to v(s) =0
e For each episode:

— loop over the time steps ¢ of the episode and perform an update of v involving the current state
s¢, reward ryy 1, discount factor v and learning rate «

We are concerned with the last bullet point. In other words, for a given episode comprised of a list of
states (so, $1,...,57) and list of rewards (ry,72,...,77), we can compute the full update of the value
function v resulting from these observations. This is the view we will take in this exercise.

We will as usual represent the value function as a dictionary, where the keys s are states s, and the
values vIsl is the value-function v(s). It will be pre-initialized to zero in the test code. The states will
be integers and the rewards floating point numbers.

(a) Complete def a_compute_deltas(v: dict, states: list, rewards: list, gamma: float) : Given avalue function v
as a dictionary, lists of states and rewards corresponding to an episode, and the discount factor =,
the function should return a list comprised of the values:

(503 617 cee 75T—1)

where ¢; is the TD error defined in [SB18, Equation 6.5].

(b) Complete def b_perform_tdO(v: dict, states: list, rewards: list, gamma: float, alpha: float) : Given inU.tS Of
the previously described format, as well as a learning rate «, the function should compute the TD(0)
update to v resulting from a single episode and return the updated value function v (as a dictionary).

(C) Complete def c_perform_tdO_batched(v: dict, states: list, rewards: list, gamma: float, alpha: float) : We Wlll
now consider the batched view of TD(0) as described in [SB18| Section 6.3]. In the batched version,
all changes to v that arise during an episode (i.e., the factors ad; in [SBI18|) are computed as usual
using the same value function v, but the changes are only applied to v at the end of the episode all
at once. The function should compute the batched update and return the updated version of v in
the usual format.
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To solve this question, you should edit the file iric/exam/midterm2023b/question_mdp.py . This problem
will consider a variant of the Gambler environment discussed in [SB18] which has been simplified as
follow:

e The goal is 40 instead of a 100, and the initial state is so = 20 instead of sg = 50

e There is a small betting fee, so that the reward of betting a dollars is — 155

e The problem does not terminate. If you go bust, s = 0, or win, s = 40, only the action ¢ = 0 is
available and the problem no longer gives a reward.

The problem with these modifiactions have been implemented as the file smalitime_gambler.py in the exam
folder using the MDP class. The changes makes the problem more manageable. In particular, you no
longer have to deal with terminal states since there are none.

In the following, we will consider a couple of sub-optimal planning approaches which can be thought of
as steps towards value iteration. You may assume that v = 1.

(a) Complete det a_get_reward(s : int, a : int) : Given a state S; = s and an action A; = a, compute the
reward function, i.e. the average of ryy;. Formally, the function should return the number:

T(S,(I) = E[Rt+l|‘4t =a,S = S] = ZP(S/,T|S,Q)T

Hint: Use the transition probabilities.

(b) Complete det b_get_best_immediate_action(s : int) : Given a state Sy = s, compute the action which
leads to the immediate best reward. I.e., compute and return:

a* = argmaxE[Ry11]|A; = a,S; = s] = argmaxr(s,a)
a a

(c) Complete det c_get_best_action_twosteps(s : int) : Our policy is myopic, meaning that it plan on a very
short horizon of 1.

We can improve that by planning on a horizon of 2. Specifically, this function should compute and
return the action a* that maximize R;y1 + Ryqo:
at = arg max [E |:Rt+1 + max £ [Rt+2|St+1, At+1 = a’] |At = a, St = S}
a a’

Hint: Tt may help you to notice that:

argmax E |Ryq +maxE[Ryy0|Sii1, Aryr = d]|[Ay = a, S = 3} = argmaxz:p(r7 s'|a, s) (7‘ + ma}xr(s’,a’)) )

r,s’

Question 8 continues on the next page. ..
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