Ordinary spring exam 02465 May 24th, 2023

Written examination date: May 24th, 2023

Course title: Introduction to reinforcement learning and control
Course number: 02465

Aids allowed: All aids allowed

Exam duration: 4 hours

Weighting: The exam is divided into 3 parts:
e Multiple-Choice questions
e Conceptual questions
e Programming questions
The overall scores of each part contribute roughly equally towards the overall result. Each
question in each part contribute equally towards the score of that part.
Part I: Questions 1-9 are multiple choice. The score of a correct answer is 3 points. The
score of an incorrect answer is —1 points. The score of option E or blank is 0 points.
Part IT and part III: Each completed sub-task contribute towards your score.
Preparing your handin: The three parts are prepared as follows:
Part I: Edit the file irlc/exam/exam2023spring/multiple_choice_answers.py . Don’t include calcula-
tions. Only answer with 'a*, '8*, ¢, ', 'E'.
Part II: Create a PDF file with your answers and justifications.
Part ITI: Program your answer in the .py-files indicated in the question and run
irlc/exam/exam2023spring/exam2023spring_tests_grade.py tO generate your .token -file.
Handing in: To hand in, you should upload the files:

e The irlc/exam/exam2023spring/multiple_choice_answers.py -file with your answer to part I
e The .par -file with your answers to part IT
e The .token -file with your answers to part III

e The irlc/exam/exam2023spring/question_inventory.py SOUICE file containing your solution
e The irlc/exam/exam2023spring/question_lqr.py source file containing your solution

e The irlc/exam/exam2023spring/question_bandit.py source file containing your solution

Note on part II: The main quantities asked for are highlighted as f(x) . Answer
unambigiously, concisely, and if applicable with algebraic simplifications. Your final result
must be clearly indicated at the end of your answer: f(x) = 3sin(z) . To get credit, you
must state the relevant theory and equations, and all relevant calculations must be included.
Credit is not given for answers with missing or erroneous justifications.

Note on part III: To get started, move the folder iric/exam/exam2023spring from the .zip file
to the corresponding location in your existing exercise directory. The .py source files must
be reproducible and readable so that someone else can run and fully understand your
solution. You can freely use the iric -toolbox (including solutions) and the packages we
have used in the course, but you must include additional code you write during the exam
or have prepared beforehand in the source files listed above. The source files must not be
renamed. The .token file contains your results and must be up to date with your source files,
i.e., generate it just prior to handin. In the case they differ, the .token file takes precedence.
Credit is given for correct implementations defined by the problem description. The points
in the .token file name is computed from the public tests, and might not correspond to
overall correctness.

Page 2 of 12

O_
_2.
4
6
0 1 2 3 4 5 6
P

Figure 1: Plot of PID controller

Part I: Multiple-Choice

QUESEION Lt ittt ittt ittt ittt it eenteeenteeensoeensossnsossnsossnsossnsossnsossnsossnss
Suppose we want to apply the dynamical programming algorithm to chess E This will lead to several
practical problems, however, focusing just on the potential problems listed below, which one will be
a main obstacle in terms of obtaining a near-perfect chess policy using the dynamical programming
algorithm?

A. Within a few iterations, the policy function g will require too much memory to store
Given a state xy, it is not practical to define the action spaces A (xy)
It will require too much space to store the state space Sy

There is no reasonable choice of planning horizon N

=Y aw

Don’t know.

QUESEION 2t ittt ittt ittt it ieeteeeeteeeasesonsosensassnsossasossasossasossasossnsononss

Consider PID control applied to steer a car along a straight track. The control signal w; corresponds
to the angle between the front wheel and the centerline of the track, the input signal xj, corresponds to
the angle between the car body and the track in degrees, and the goal of the PID controller is to bring
the angle between the car body and the track to a value of x* = 4 degrees (corresponding to executing
a turn). Figure [1| shows the behavior of both xy and uy at time steps £k = 0,1,2,.... Suppose the PID
controller takes the form described in the lecture notes, and assume Kg; = K; = 0, which one of the
following options are true?

A K,=1

B. K,=2

C. K,=3
D. There is not enough information to determine the correct answer
E.

Don’t know.

1We don’t consider time control as part of the problem.

Page 3 of 12

‘Arma:O Arma=1 Arma=2 Arma=3
Ny(a) 14 11 6 3
Total reward S;(a) 45 31 15 5

Table 1: Outcome of simulating a k-armed bandit problem for a few iterations

L0 171 o o T
Which one of the following options are correct about direct control using trapezoid collocation?

A. It is an example of open-loop control
It cannot take constraints into account
It requires us to specify a fixed initial state &y = x(to)

It can only be applied to quadratic cost functions

=Y aw

Don’t know.

L 1] o 4 T
Suppose iterative LQR is applied to steer the racecar from the car-example ([Her24l section [10.4.3])
through the track. Which of the following statements are true about the dimensions of the linearized
matrices Ay and Bj?

A. The dimension of A is 6 X 6 and the dimension of By is 6 x 2
The dimension of Ay is 6 x 2 and the dimension of By is 6 x 1
The dimension of Ay is 2 x 2 and the dimension of By, is 2 x 6

The dimension of A is 6 x 6 and the dimension of By is 2 x 2

=Y aw

Don’t know.

L =T v o o T T
Consider a k-armed bandit problem with k = 4. Suppose we are at time step ¢, and we denote by N;(a)
the total number of times we have pulled arm a = 0,1,2,3 up to now, and by Si(a) the sum of all
rewards we have obtained by pulling arm a, i.e. in the notation [SBI§|[Eq. 2.1]

t—1
St(a) = {Sum of rewards when a taken prior to t} = Z R 14,4
i=1
t—1
N¢(a) = {Number of times a taken prior to t} = Z 14,0
i=1

These values have been collected in table[l} Suppose we apply UCBI to the problem using ¢ = 2. Which
arm will be selected next?

A. UCBI selects arm A; =0
B. UCBI selects arm A; =1
C. UCBI1 selects arm A; = 2
D. UCBI selects arm A; = 3
E

. Don’t know.

Page 4 of 12

Figure 2: A gridworld environment and the @-values updated by applying first-visit Monte-Carlo for one
episode. The plot is for illustration purposes, and the problem can be solved without consulting the particular
values shown here.

QUESEION B: ottt ittt ittt ittt ittt teeenteeenseeensassnsosensossnsossnsossnsossnsossnss
Let vy, g« be the optimal value and action-value functions of an MDP, let 7 be any policy and finally let
vy and g be the value/action-value function associated with 7. Which one of the following statements
are true in general?

A. max; ¢.(s,a) = vi(a)

B. There is a policy , a state s and an action a so that g.(s,a) < ¢-(s,a)
C. For all m and a it is true that ¢.(s,a) > ¢z (s,a)

D. There is a policy 7 and state s so that max, g.(s,a) = v.(s)

E. Don’t know.

L =T v o) o T A
We consider the familiar gridworld environment discussed in [Her24, section m shown in fig. 2l The
agent receives a reward of +1 on completion (the upper-right square), and otherwise a living reward of
—2. Recall that in first visit Monte-Carlo control (see [SB18, Section 5.3]), the action-values Q(s, a) are
computed as the average of the returns. Suppose that during a particular episode, the returns computed
by first-visit monte carlo are G, Gy, ...,Gr_1 (for illustration purposes, fig. [2[shows a single update of
first-visit monte carlo with our choice of rewards, and for particular choices of v,). What relationship
holds true for the returns in the beginning of the episode, i.e. ¢t < T — 27

A. Gt = fyGt+1 -2
Gt+1 = OéGt — 2"}/ + GT’)/T

B

C. Gy = aGy1y!
D. G;=-2¢' +1
E

Don’t know.

Page 5 of 12

Question 8:

...

Which of the following statements are true about TD(A)?

A.
B.

C.
D.

E.

Question 9:

TD(A) cannot be used with function approximators

The role of the eligibility trace is to let reward obtained earlier in an episode affect the change
in the value function later in the episode

The eligibility trace cannot be negative

The eligibility trace is a measure of the amount of reward obtained in a given state weighted
by an exponential factor

Don’t know.

Which one of the following statements about @-learning is correct?

A.

B.

Q

The first step in training a Q-learning agent is to compute the set of all states the agent can
be in

The @Q-table Q(s,a) in Q-learning is a measure of the reward the agent will obtain in the very
next step multiplied by v

Q-learning still works if we initialize the Q-table to —1, i.e. Q(s,a) =—1foralls€ S

. When @Q-learning is applied to a deterministic environment, the agent will follow a deterministic

policy

Don’t know.

Page 6 of 12

Part 1I: Conceptual questions

QUESTION 10: .ottt ittt ittt ittt ettt easaeaeaeeaenenenensnsasasasasscnsenenans
Consider a control problem where a control signal u(t) € R is applied to control a system with state
z(t) € R, and where the dynamics satisfy the following differential equation:

&= f(z,u) =4ux (1)

The first two questions will assume the problem has been discretized using a time constant of A = 0.5

to yield states zg, 1,22, - and control signals ug, u1, ug,

(a) Assume the problem is Euler discretized. Determine the discrete dynamics f; used to compute
Try1 = fr(or, ug).

(b) Continuing the previous problem, suppose we wish to apply a LQR controller to control the system

near a state . The system is therefore linearized around z and @ = 1 to give rise to the linearized
dynamics 11 = Axy + Bug + d. Determine A, B and d in terms of 7.

Page 7 of 12

Figure 3: An example gridworld environment that Sarsa is applied to. The figure shows the current @)-values.

QUESEION L0t ottt ittt ittt e teeenteeeasossasossasossasossassssassssasossassssassnsas
Suppose that Sarsa (using discount factor v = 1, a learning rate « = 0.9 and an exploration rate of
e = 0.1) is applied to the Gridworld MDP shown in fig. [3 The living reward is 0, and the dynamics is
deterministic. Recall that pacman stay at the current state if he choose an action which moves him into
a wall. The current state of the agent is as indicated in the figure.

(a)

Suppose that in the next step of the Sarsa algorithm, the agent takes (and execute) the action
North in the current position s. Upon taking this action, the @-value associated with the red cross
Q(s,North) will be updated by Sarsa.

What are the possible value(s) of Q(s,North) after this step? (if there are more than one, list all
of them).

In the previous question, we took one step, performed a single action North, and updated one
Q-value.

In this question, suppose again that the agent starts in the position indicated in fig. |3| and assume
Sarsa is applied to update the Q-values shown in the figure.

Different sequences of future actions will result in different Q-values being updated. What are the
minimum number of steps which are required before the @-value associated with the green circle

can take a value different than 0, and what actions will the agent take in this case? Give your
answer as a list of actions.

Sarsa learning has clearly not converged in the example shown above. However, assume we apply
a more realistic version of Sarse where v = .95, and where importantly a decrease to 0 at a rate
satisfying the stochastic approximation conditions [SBI8| Eq. (2.7)] for convergence so that the
@-values converge to their true values under Sarsa.

Consider the two @Q-value associated with moving North and East @,,, @, indicated by the blue n,
e-letters in fig. [3] After convergence, it must be the case that either they will have the same value,
Qn = Q¢, or one will be greater than the other: @, > Q. or @, < Q.. State which is the case
and provide a clear and specific argument for your answer.

Page 8 of 12

R:()ap:%
OGS O
R=0,p=3

L0 1T o o T 5
Consider a Markov Reward Process with two states s; and so and a discount factor of 0 < v < 1 shown
in fig. ﬂ With equal probability %, the system will either stay in the current state or transition to the
other state. The MRP never terminates.

e When the system transition s; to s (or sg to s1) it will receive a reward of 0,

e If it transition from s; to s it will receive a reward of 1,

e If it transition from s, to so it will receive a reward of 2.

Since there are two states, the value function v, takes two values vy, vy € R defined as: v1 = v, (s1) and
vy = v (S2).
(a) Assume for a moment that vy = 3 and v = 2. What is v; ? (i.e. the value function in sy, v-(s1))

(b) Ignore the previous question and consider the general form of the problem. As the name suggest,
when Bellmans expectation equations are applied to this problem we obtain two equations. Write

them as a linear system of the form b= Av where v = [zl} State what A and b are as
2

functions of ~.

2Recall a Markov Reward Process is a Markov decision process without actions, see [SB18, Example 6.2].

Page 9 of 12

Part III: Programming questions

L =T v o o T I
To solve this question, you should edit the file irlc/exam/exam2023spring/question_inventory.py . This
problem focuses on a variant of the inventory control problem discussed in [Her24] section . This
inventory problem represents a flower-store such that x; denotes the number of flower bouquets in stock
at planning round k. The original inventory control model and the dynamical programming algorithm
is included in the exam folder.

The following tasks can be solved by implementing suitable variants of the inventory control problem,

and then applying dynamical programming to determine the optimal policy pu(zo) and cost-function
J*(z0) in the starting state.

The flower store problem is equivalent to the inventory control problem on a horizon of N with two
changesﬂ

o gi(xp, ug, wi) = cu+ |z + up — w

e The distribution of the number of items customers buy wy, is:

pw(wr = Olzg, ux) = 0.1, pw(wp = L|zg,ux) = 0.3, pw(wr = 2|k, ur) = 0.6.

(a) Complete def a_get_policy(: int, c: float, x0 : int) : This function is given a value of N, ¢ and a

starting state xo, and should return the action the optimal policy computes in xg, i.e. uj(zo) as an
int .

(b) Complete def b_prob_one(: int, x0 : int) : For every policy and starting state xq, there is a certain
chance p(xy = 1]zg) we will end up with a single item (bouquet) on the last day N when following
the policy. The clerk operating the store would very much like to bring this last bouquet home with
her, and so she is solely concerned with determining the policy which maximize p(zy = 1|zg), i.e.
the chance she can bring home a single bouquet at the end of the planning period.

Determine what this chance is when we follow the policy which is solely concerned with with
maximizing the chance that z = 1. The function should accept N and x(as input argument, and
return the value of p(zy = 1|zg) as a float .

Hint: Alter the cost-functions so that the optimal solution mazimize this probability. The Pacman-
problems where we computed the probability of winning may provide inspiration.

3The expression |z| return the absolute value, i.e. |[4| = | — 4| = 4

Page 10 of 12

L0 1] o3 o T 0
To solve this question, you should edit the file iric/exan/exam2023spring/question_1qr.py . In this
problem, we will consider the Pendulum-swingup task described in [Her24l section . Recall that
in this problem, the state of the pendulum is two-dimensional:

[

and under application of a control signal u, the state satisfies the differential equation:

§=17 sin(f) +

l g=982,1=1,m=0.8. (3)

U
mi?’
(The pendulum model is implemented as the class continiousPendulumModel in the file iric/ew04/model_pendulum.py
in the toolbox). This model is assumed to be discretized using Euler discretization with a time constant
of A = 0.5 seconds, but without applying coordinate transformations. In other words, the discrete
O

0|

We want to eventually apply LQR to the problem. However, before we get to that we will consider how
to simply apply discrete LQR to a comparable linear problem.

coordinates correspond to xj =

(a) Complete det a_LQR_solve(a : float, x0 : mp.ndarray) : Lhis function consider a discrete problem with
cost matrices @ = R = I and where the dynamics depends on a parameter a given by

1 a 0 1
Tp+1 = [0 1] T + L] ug + [0}

The function should apply discrete LQR to the problem on a horizon sufficiently long to guarantee
convergencdﬂ of the policy matrices Lg, ly and return the first action ug the discrete LQR. controller
wish to execute in state xy. The action should be returned as a fioat .

(b) Complete def b_linearize(theta : float) : Return to the general formulation eq. . Given an angle

0
0 and @ = 0, and return three
numpy adarray objects A, B and d of the right dimension corresponding to the linearized problem.
IL.e., it should hold approximately for states and actions close to the linarization point &, @ that

0, this function should linearize the discretized model around & =

Ty ~ Axy + Bug +d

(c) Complete def c_get_optimal_linear_policy(x0 : mp.ndarray) : We are now ready to build our controller.
Given input state xg, specified as an np.ndarray , this function should linearize the pendulum problem
_ 0
dx =
around & [O
horizon to guarantee convergence and using @ = R = I), and then finally return the action the
LQR controller will take in the &g as a fioat .

} and @ = 0, then solve the linearized problem using LQR (using a sufficiently long

4For instance N = 100

Page 11 of 12

L0 1] o o T 85
To solve this question, you should edit the file irlc/exam/exam2023spring/question_bandit.py . In this
question, you will use bandit algorithms to determine which of & actions, corresponding to advertise-
ments, are the best based on the clicks-per-hour they result in when presented to users. The bandit
algorithm we will first consider will be the simple bandit algorithm presented in [SB1§|[Section 2.4]. The

data will be presented to the algorithm in the shape of a list of actions (a1, as,...,at—1) (actions) and
a list of corresponding rewards (r1,r2,...,7—1) (rewaras). The actions will be assumed to be integers
0,1,....k—1.

(a) Complete def a_select_next_action_epsilonO(k : int, actions : list, rewards : list) : Givenanumber Of arms
k, a list of t — 1 actions actions and rewards rewards , this function should return the next action
a; as an int generated according to the bandit algorithm described in [SB18][Section 2.4] when
trained on the data, but assuming we act greedily all the time: ¢ = 0.

(b) Complete def b_select_next_action(k : int, actions : list, rewards : list, epsilon : float) : Consider again
the simple bandit algorithm in [SB18|[Section 2.4]. In addition to the previous input, the function
should now also accept a exploration rate € > 0. The function should return the action a; as an
int generated according to the simple bandit algorithm.

(C) Complete def c_nonstationary_Qs(k : int, actions : list, rewards : list, alpha : float) : ThlS quCtiOH should
implement the non-stationary simple bandit algorithm with a-soft updates described in [SB18][Section
2.5]. The inputs have the same meaning as before, but the function should also accept the learning
rate « as an input argument. The function should return a dictionary which has actions a as keys,
and their corresponding @Q-value Q(a) as values.

Question 15 continues on the next page. ..

Question 15 continues. .. Page 12 of 12

References

[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. (Freely available online).

This line concludes the exam. Document build: 2024/12/13, 15:26:19.

