import time import cv2 import numpy as np import matplotlib.pyplot as plt from skimage import exposure from skimage.filters import gaussian from skimage.feature import canny from skimage.graph import route_through_array from scipy.signal import convolve2d #### Helper functions #### def load_image(path, type): """ Load an image in either gray or color mode (then convert color to gray). """ if type == 'gray': img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) if img is None: raise FileNotFoundError(f"Could not read {path}") elif type == 'color': img = cv2.imread(path, cv2.IMREAD_COLOR) if img is None: raise FileNotFoundError(f"Could not read {path}") else: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: raise ValueError("type must be 'gray' or 'color'") return img def downscale(img, points, scale_percent): """ Downsample `img` to `scale_percent` size and scale the given points accordingly. Returns (downsampled_img, (scaled_seed, scaled_target)). """ if scale_percent == 100: return img, (tuple(points[0]), tuple(points[1])) else: # Compute new dimensions width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) new_dimensions = (width, height) # Downsample downsampled_img = cv2.resize(img, new_dimensions, interpolation=cv2.INTER_AREA) # Scaling factors scale_x = width / img.shape[1] scale_y = height / img.shape[0] # Scale the points (x, y) seed_xy = tuple(points[0]) target_xy = tuple(points[1]) scaled_seed_xy = (int(seed_xy[0] * scale_x), int(seed_xy[1] * scale_y)) scaled_target_xy = (int(target_xy[0] * scale_x), int(target_xy[1] * scale_y)) return downsampled_img, (scaled_seed_xy, scaled_target_xy) def compute_cost(image, sigma=3.0, disk_size=15): """ Smooth the image, run Canny edge detection, then invert the edge map into a cost image. """ # Apply histogram equalization image_contrasted = exposure.equalize_adapthist(image, clip_limit=0.01) # Apply smoothing smoothed_img = gaussian(image_contrasted, sigma=sigma) # Apply Canny edge detection canny_img = canny(smoothed_img) # Do disk thing binary_img = canny_img k_size = 17 kernel = circle_edge_kernel(k_size=disk_size) convolved = convolve2d(binary_img, kernel, mode='same', boundary='fill') # Create cost image cost_img = (convolved.max() - convolved)**4 # Invert edges: higher cost where edges are stronger return cost_img, canny_img def backtrack_pixels_on_image(img_color, path_coords, bgr_color=(0, 0, 255)): """ Color the path on the (already converted BGR) image in the specified color. `path_coords` should be a list of (row, col) or (y, x). """ for (row, col) in path_coords: img_color[row, col] = bgr_color return img_color def circle_edge_kernel(k_size=5, radius=None): """ Create a k_size x k_size array whose values increase linearly from 0 at the center to 1 at the circle boundary (radius). Parameters ---------- k_size : int The size (width and height) of the kernel array. radius : float, optional The circle's radius. By default, set to (k_size-1)/2. Returns ------- kernel : 2D numpy array of shape (k_size, k_size) The circle-edge-weighted kernel. """ if radius is None: # By default, let the radius be half the kernel size radius = (k_size - 1) / 2 # Create an empty kernel kernel = np.zeros((k_size, k_size), dtype=float) # Coordinates of the center center = radius # same as (k_size-1)/2 if radius is default # Fill the kernel for y in range(k_size): for x in range(k_size): dist = np.sqrt((x - center)**2 + (y - center)**2) if dist <= radius: # Weight = distance / radius => 0 at center, 1 at boundary kernel[y, x] = dist / radius return kernel #### Main Script #### def main(): # Define input parameters image_path = 'agamodon_slice.png' image_type = 'gray' # 'gray' or 'color' downscale_factor = 100 # % of original size points_path = 'agamodonPoints.npy' # Load image image = load_image(image_path, image_type) # Load seed and target points points = np.int0(np.round(np.load(points_path))) # shape: (2, 2), i.e. [[x_seed, y_seed], [x_target, y_target]] # Downscale image and points scaled_image, scaled_points = downscale(image, points, downscale_factor) seed, target = scaled_points # Each is (x, y) # Convert to row,col for scikit-image (which uses (row, col) = (y, x)) seed_rc = (seed[1], seed[0]) target_rc = (target[1], target[0]) # Compute cost image cost_image, canny_img = compute_cost(scaled_image, disk_size=17) # Find path using route_through_array # route_through_array expects: route_through_array(image, start, end, fully_connected=True/False) start_time = time.time() path_rc, cost = route_through_array( cost_image, start=seed_rc, end=target_rc, fully_connected=True ) end_time = time.time() print(f"Elapsed time for pathfinding: {end_time - start_time:.3f} seconds") # Convert single-channel image to BGR for coloring color_img = cv2.cvtColor(scaled_image, cv2.COLOR_GRAY2BGR) # Draw path. `path_rc` is a list of (row, col). # If you want to mark it in red, do (0,0,255) because OpenCV uses BGR format. color_img = backtrack_pixels_on_image(color_img, path_rc, bgr_color=(0, 0, 255)) # Display results plt.figure(figsize=(20, 8)) plt.subplot(1, 2, 1) plt.title("Cost image") plt.imshow(cost_image, cmap='gray') plt.subplot(1, 2, 2) plt.title("Path from Seed to Target") # Convert BGR->RGB for pyplot plt.imshow(color_img[..., ::-1]) plt.show() if __name__ == "__main__": main()