#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 29 11:30:17 2019 @author: vand@dtu.dk """ import numpy as np import scipy.io import scipy.ndimage import matplotlib.pyplot as plt #% STRUCTURE TENSOR 3D def structure_tensor(volume, sigma, rho): """ Structure tensor for 3D image data Arguments: volume: a 3D array of size N = slices(z)*rows(y)*columns(x) sigma: a noise scale, structures smaller than sigma will be removed by smoothing rho: an integration scale giving the size over the neighborhood in which the orientation is to be analysed Returns: an array with shape (6,N) containing elements of structure tensor s_xx, s_yy, s_zz, s_xy, s_xz, s_yz ordered acording to volume.ravel(). Author: vand@dtu.dk, 2019 """ # computing derivatives (scipy implementation truncates filter at 4 sigma) volume = volume.astype(np.float); Vx = scipy.ndimage.gaussian_filter(volume, sigma, order=[0,0,1], mode='nearest') Vy = scipy.ndimage.gaussian_filter(volume, sigma, order=[0,1,0], mode='nearest') Vz = scipy.ndimage.gaussian_filter(volume, sigma, order=[1,0,0], mode='nearest') # integrating elements of structure tensor (scipy uses sequence of 1D) Jxx = scipy.ndimage.gaussian_filter(Vx**2, rho, mode='nearest') Jyy = scipy.ndimage.gaussian_filter(Vy**2, rho, mode='nearest') Jzz = scipy.ndimage.gaussian_filter(Vz**2, rho, mode='nearest') Jxy = scipy.ndimage.gaussian_filter(Vx*Vy, rho, mode='nearest') Jxz = scipy.ndimage.gaussian_filter(Vx*Vz, rho, mode='nearest') Jyz = scipy.ndimage.gaussian_filter(Vy*Vz, rho, mode='nearest') S = np.vstack((Jxx.ravel(), Jyy.ravel(), Jzz.ravel(), Jxy.ravel(),\ Jxz.ravel(), Jyz.ravel())); return S def eig_special(S, full=False): """ Eigensolution for symmetric real 3-by-3 matrices Arguments: S: an array with shape (6,N) containing structure tensor full: a flag indicating that all three eigenvalues should be returned Returns: val: an array with shape (3,N) containing sorted eigenvalues vec: an array with shape (3,N) containing eigenvector corresponding to the smallest eigenvalue. If full, vec has shape (6,N) and contains all three eigenvectors More: An analytic solution of eigenvalue problem for real symmetric matrix, using an affine transformation and a trigonometric solution of third order polynomial. See https://en.wikipedia.org/wiki/Eigenvalue_algorithm which refers to Smith's algorithm https://dl.acm.org/citation.cfm?id=366316 Author: vand@dtu.dk, 2019 """ # TODO -- deal with special cases, decide treatment of full (i.e. maybe return 2 for full) # computing eigenvalues s = S[3]**2 + S[4]**2 + S[5]**2 # off-diagonal elements q = (1/3)*(S[0]+S[1]+S[2]) # mean of on-diagonal elements p = np.sqrt((1/6)*(np.sum((S[0:3] - q)**2, axis=0) + 2*s)) # case p==0 treated below p_inv = np.zeros(p.shape) p_inv[p!=0] = 1/p[p!=0] # to avoid division by 0 B = p_inv * (S - np.outer(np.array([1,1,1,0,0,0]),q)) # B represents a 3-by-3 matrix, A = pB+2I d = B[0]*B[1]*B[2] + 2*B[3]*B[4]*B[5] - B[3]**2*B[2]\ - B[4]**2*B[1] - B[5]**2*B[0] # determinant of B phi = np.arccos(np.minimum(np.maximum(d/2,-1),1))/3 # min-max to ensure -1 <= d/2 <= 1 val = q + 2*p*np.cos(phi.reshape((1,-1))+np.array([[2*np.pi/3],[4*np.pi/3],[0]])) # ordered eigenvalues # computing eigenvectors -- either only one or all three if full: l = val else: l=val[0] u = S[4]*S[5]-(S[2]-l)*S[3] v = S[3]*S[5]-(S[1]-l)*S[4] w = S[3]*S[4]-(S[0]-l)*S[5] vec = np.vstack((u*v, u*w, v*w)) # contains one or three vectors # normalizing -- depends on number of vectors if full: # vec is [x1 x2 x3 y1 y2 y3 z1 z2 z3] vec = vec[[0,3,6,1,4,7,2,5,8]] # vec is [v1, v2, v3] l = np.sqrt(np.vstack((np.sum(vec[0:3]**2,axis=0), np.sum(vec[3:6]**2,\ axis=0), np.sum(vec[6:]**2, axis=0)))) vec = vec/l[[0,0,0,1,1,1,2,2,2]] # division by 0 should not occur else: # vec is [x1 y1 z1] = v1 vec = vec/np.sqrt(np.sum(vec**2, axis=0)); return val,vec def solve_flow(S): """ Solving 2D optic flow, returns LLS optimal x and y for flow along z axis (A solution of a 2x2 linear system.) Arguments: S: an array with shape (6,N) containing 3D structure tensor Returns: xy: an array with shape (2,N) containing x and y components of the flow Author: vand@dtu.dk, 2019 """ d = S[0]*S[1]-S[3]**2 # denominator aligned = d==0 # 0 or inf solutions n = np.vstack((S[3]*S[5]-S[1]*S[4],S[3]*S[4]-S[0]*S[5])) xy = np.zeros((2,S.shape[1])) xy[:,~aligned] = n[:,~aligned]/d[~aligned] return xy def tensor_vector_distance(S, u): """ Caclulating pairwise distance between tensors and vectors Arguments: S: an array with shape (6,N) containing tensor v: an array with shape (M,3) containing vectors Returns: v: an array with shape (N,M) containing pairwise distances Author: vand@dtu.dk, 2019 """ dist = np.dot(S[0:3].T,u**2) + 2*np.dot(S[3:].T,u[[0,0,1]]*u[[1,2,2]]) return dist #% INTERACTIVE VISUALIZATION FUNCTIONS - DOES NOT WORK WITH INLINE FIGURES def arrow_navigation(event,z,Z): if event.key == "up": z = min(z+1,Z-1) elif event.key == 'down': z = max(z-1,0) elif event.key == 'right': z = min(z+10,Z-1) elif event.key == 'left': z = max(z-10,0) elif event.key == 'pagedown': z = min(z+50,Z+1) elif event.key == 'pageup': z = max(z-50,0) return z def show_vol(V,cmap='gray'): """ Shows volumetric data and colored orientation for interactive inspection. @author: vand at dtu dot dk """ def update_drawing(): ax.images[0].set_array(V[z]) ax.set_title(f'slice z={z}') fig.canvas.draw() def key_press(event): nonlocal z z = arrow_navigation(event,z,Z) update_drawing() Z = V.shape[0] z = (Z-1)//2 fig, ax = plt.subplots() vmin = np.min(V) vmax = np.max(V) ax.imshow(V[z], cmap=cmap, vmin=vmin, vmax=vmax) ax.set_title(f'slice z={z}') fig.canvas.mpl_connect('key_press_event', key_press) def show_vol_flow(V, fxy, s=5, double_arrow = False): """ Shows volumetric data and xy optical flow for interactive inspection. Arguments: V: volume fxy: flow in x and y direction s: spacing of quiver arrows @author: vand at dtu dot dk """ def update_drawing(): ax.images[0].set_array(V[z]) ax.collections[0].U = fxy[0,z,s//2::s,s//2::s].ravel() ax.collections[0].V = fxy[1,z,s//2::s,s//2::s].ravel() if double_arrow: ax.collections[1].U = -fxy[0,z,s//2::s,s//2::s].ravel() ax.collections[1].V = -fxy[1,z,s//2::s,s//2::s].ravel() ax.set_title(f'slice z={z}') fig.canvas.draw() def key_press(event): nonlocal z z = arrow_navigation(event,z,Z) update_drawing() Z = V.shape[2] z = (Z-1)//2 xmesh, ymesh = np.meshgrid(np.arange(V.shape[1]), np.arange(V.shape[2]), indexing='ij') # TODO: figure out exactly why this ij later needs 'xy' fig, ax = plt.subplots() ax.imshow(V[z],cmap='gray') ax.quiver(ymesh[s//2::s,s//2::s], xmesh[s//2::s,s//2::s], fxy[0,z,s//2::s,s//2::s], fxy[1,z,s//2::s,s//2::s], color='r', angles='xy') if double_arrow: ax.quiver(ymesh[s//2::s,s//2::s], xmesh[s//2::s,s//2::s], -fxy[0,z,s//2::s,s//2::s], -fxy[1,z,s//2::s,s//2::s], color='r', angles='xy') ax.set_title(f'slice z={z}') fig.canvas.mpl_connect('key_press_event', key_press) def fan_coloring(vec): """ Fan-based colors for orientations in xy plane Arguments: vec: an array with shape (3,N) containing orientations Returns: rgba: an array with shape (4,N) containing rgba colors @author:vand@dtu.dk """ h = (vec[2]**2).reshape((vec.shape[1],1)) # no discontinuity and less gray s = np.mod(np.arctan(vec[0]/vec[1]),np.pi) # hue angle hue = plt.cm.hsv(s/np.pi) rgba = hue*(1-h) + 0.5*h rgba[:,3] = 1 # fixing alpha value return rgba def show_vol_orientation(V, vec, coloring = lambda v : np.c_[abs(v).T,np.ones((v.shape[1],1))], blending = lambda g,c : 0.5*(g+c)): """ Shows volumetric data and colored orientation for interactive inspection. @author: vand at dtu dot dk """ rgba = coloring(vec).reshape(V.shape+(4,)) def update_drawing(): ax.images[0].set_array(blending(plt.cm.gray(V[z]), rgba[z])) ax.set_title(f'slice z={z}') fig.canvas.draw() def key_press(event): nonlocal z z = arrow_navigation(event,z,Z) update_drawing() Z = V.shape[0] z = (Z-1)//2 fig, ax = plt.subplots() ax.imshow(blending(plt.cm.gray(V[z]), rgba[z])) ax.set_title(f'slice z={z}') fig.canvas.mpl_connect('key_press_event', key_press)