""" This script does the exact same as 'NerveSegmenetation3D.ipynb' """ import os import numpy as np import matplotlib.pyplot as plt from skimage.io import imread from scipy.ndimage.interpolation import map_coordinates from qimtools import visualization, inspection, io from slgbuilder import GraphObject,MaxflowBuilder def draw_segmentations(data, helper,layer=0): """Draw all segmentations for objects in the helper on top of the data.""" if data.ndim != 3: raise ValueError('Data should be in three dimensions') K = (len(helper.objects)//vol.shape[-1])//2 # Create figure. plt.figure(figsize=(10, 10)) plt.imshow(data[...,layer], cmap='gray') plt.xlim([0, data[...,layer].shape[1]-1]) plt.ylim([data[...,layer].shape[0]-1, 0]) # Draw segmentation lines. for i, obj in enumerate(helper.objects): if (i >= layer*K and i < (layer+1)*K) or (i >= (vol.shape[-1]+layer)*K and i< (vol.shape[-1]+layer+1)*K): # Get segmentation. segment = helper.get_labels(obj) # Create line. line = np.count_nonzero(segment, axis=0) # Get actual points. point_indices = tuple(np.asarray([line - 1, np.arange(len(line))])) points = obj.sample_points[point_indices] # Close line. points = np.append(points, points[:1], axis=0) # Plot points. plt.plot(points[..., 1], points[..., 0]) plt.show() def unfold_image(img, center, max_dists=None, r_min=1, r_max=20, angles=30, steps=15): # Sampling angles and radii. angles = np.linspace(0, 2*np.pi, angles, endpoint=False) distances = np.linspace(r_min, r_max, steps, endpoint=True) if max_dists is not None: max_dists.append(np.max(distances)) # Get angles. angles_cos = np.cos(angles) angles_sin = np.sin(angles) # Calculate points positions. x_pos = center[0] + np.outer(angles_cos, distances) y_pos = center[1] + np.outer(angles_sin, distances) # Create list of sampling points. sampling_points = np.array([x_pos, y_pos]).transpose() sampling_shape = sampling_points.shape sampling_points_flat = sampling_points.reshape((-1, 2)) # Sample from image. samples = map_coordinates(img, sampling_points_flat.transpose(), mode='nearest') samples = samples.reshape(sampling_shape[:2]) return samples, sampling_points #%% in_dir = 'data/' Vol_path = os.path.join(in_dir, 'nerves3D.tiff') # Load the data vol = io.Volume( Vol_path ) # Convert the stack of 2D slices to a 3D volume vol = vol.concatenate().astype(np.int32) vol = np.transpose(vol,(1,2,0)) # visualization.show_vol( vol, axis=2 ) #%% # Get centers path = in_dir+'nerveCenters.png' centers = imread(path)[:,:,0] centers_small = np.transpose(np.where(centers==1)) centers_large = np.transpose(np.where(centers==2)) # Show volume slice with centers. plt.imshow(vol[...,0], cmap='gray') plt.scatter(centers_small[..., 1], centers_small[..., 0], color='red', s=6) plt.scatter(centers_large[..., 1], centers_large[..., 0], color='blue', s=6) plt.show() print(f'Number of objects: {len(centers_small)+len(centers_large)}') #%% nerve_samples = [] outer_nerves = [] inner_nerves = [] layers = [] # For each center, create an inner and outer never. for i in range(vol.shape[-1]): for center in centers_small: samples, sample_points = unfold_image(vol[...,i], center,r_max=40,angles=40,steps=30) nerve_samples.append(samples) # Create outer and inner nerve objects. diff_samples = np.diff(samples, axis=0) diff_sample_points = sample_points[:-1] outer_nerves.append(GraphObject(255 - diff_samples, diff_sample_points)) inner_nerves.append(GraphObject(diff_samples, diff_sample_points)) for center in centers_large: samples, sample_points = unfold_image(vol[...,i], center,r_max=60,angles=40,steps=30) nerve_samples.append(samples) # Create outer and inner nerve objects. diff_samples = np.diff(samples, axis=0) diff_sample_points = sample_points[:-1] outer_nerves.append(GraphObject(255 - diff_samples, diff_sample_points)) inner_nerves.append(GraphObject(diff_samples, diff_sample_points)) helper = MaxflowBuilder() helper.add_objects(outer_nerves + inner_nerves) helper.add_layered_boundary_cost() helper.add_layered_smoothness(delta=2) for outer_nerve, inner_nerve in zip(outer_nerves, inner_nerves): helper.add_layered_containment(outer_nerve, inner_nerve, min_margin=3, max_margin=6) flow = helper.solve() print('Maximum flow/minimum energy:', flow) # Get segmentations. segmentations = [] # for i in range(vol.shape[0]): for outer_nerve, inner_nerve in zip(outer_nerves, inner_nerves): segmentations.append(helper.get_labels(outer_nerve)) segmentations.append(helper.get_labels(inner_nerve)) segmentation_lines = [np.count_nonzero(s, axis=0) - 0.5 for s in segmentations] # plt.figure(figsize=(15, 5)) # for i, samples in enumerate(nerve_samples): # ax = plt.subplot(3, len(nerve_samples) // 3 + 1, i + 1) # ax.imshow(samples, cmap='gray') # ax.plot(segmentation_lines[2*i]) # ax.plot(segmentation_lines[2*i + 1]) # plt.show() draw_segmentations(vol, helper,layer=0) #%% Multi-object exclusion from slgbuilder import QPBOBuilder helper = QPBOBuilder() helper.add_objects(outer_nerves + inner_nerves) helper.add_layered_boundary_cost() helper.add_layered_smoothness(delta=2) for outer_nerve, inner_nerve in zip(outer_nerves, inner_nerves): helper.add_layered_containment(outer_nerve, inner_nerve, min_margin=3, max_margin=6) twice_flow = helper.solve() print('Two times maximum flow/minimum energy:', twice_flow) if 2*flow == twice_flow: print('QPBO flow is exactly twice the Maxflow flow.') else: print('Something is wrong...') # Add exclusion constraints between all pairs of outer nerves. interval = len(outer_nerves)//vol.shape[-1] for i in range(vol.shape[-1]): for j in range(len(outer_nerves)//vol.shape[-1]): for k in range(j + 1, len(outer_nerves)//vol.shape[-1]): helper.add_layered_exclusion(outer_nerves[interval*i+j], outer_nerves[interval*i+k], margin=3) twice_flow = helper.solve() print('Two times maximum flow/minimum energy:', twice_flow) draw_segmentations(vol, helper,layer=9)