# Exercise 1.1.1 Image convolution - Read the image using [`skimage.io.imread`](https://scikit-image.org/docs/stable/api/skimage.io.html#skimage.io.imread) - For convolution use [`scipy.ndimage.convolve`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html) - After completing the exercise test agains [`scipy.ndimage.gaussian_filter`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html) # Exercise 1.1.3 Curve smoothing - Make the matrix using [`scipy.linalg.circulant`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html) - For matrix-vector multiplication you can use [`numpy.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html) or the shorthand operator `@` (explained at the bottom of page dedicated to `matmul`). # Exericse 1.1.6 Working with volumetric image - To get hold of all image in a certain folder, use `sorted(os.listdir(\<FOLDER NAME\>))` # Exercise 1.1.7 PCA of multispectral image - For eigendecomposition use `numpy.linalg.eig` - You can compare your PCA against the existing implementation `sklearn.decomposition.PCA` # Exercise 1.1.8 Bacterial growth from movie frames - To read the movie as a list of images, use following code block ```python import imageio import skimage filename = ... # filename of the mp4 movie vid = imageio.get_reader(filename, 'ffmpeg') frames = [] for v in vid.iter_data(): frames.append(skimage.color.rgb2gray(v)) ```