{-# LANGUAGE BlockArguments #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE NoMonomorphismRestriction #-} module ReduceC ( defaultReduceC, defaultReduceCWithKeywords, -- reduceCTranslUnit, -- * Context Context (..), defaultContext, -- * Helpers prettyIdent, ) where import Control.Applicative import Control.Monad import qualified Control.Monad.IRTree as IRTree import Control.Monad.Reduce import Control.Monad.State import Control.Monad.Trans.Maybe import Data.Data import Data.Foldable import Data.Function import Data.Functor import qualified Data.List as List import qualified Data.Map.Strict as Map import Data.Maybe import Data.Monoid import qualified Data.Set as Set import Data.Vector.Internal.Check (HasCallStack) import qualified Language.C as C import qualified Language.C.Data.Ident as C import qualified Language.C.Data.Node as C reduceCTranslUnit :: (MonadReduce Lab m) => C.CTranslationUnit C.NodeInfo -> Context -> m (C.CTranslationUnit C.NodeInfo) reduceCTranslUnit (C.CTranslUnit es ni) ctx = do (_functions, _structs) <- flip evalState ctx do (fs, sts) <- flip mapAndUnzipM es \e -> do includeTypeDef e funcs <- gets \ctx' -> findFunctions (: []) ctx' e structs <- gets \ctx' -> findStructs (: []) ctx' e pure (funcs, structs) pure (pure (concat fs, concat sts)) let funmap :: [(C.Ident, Maybe Function)] = List.sortOn (maybe 0 (negate . funSize) . snd) . Map.toList . Map.fromListWith const . map (\f -> (funName f, Just f)) . List.sortOn funSize $ _functions let reduce funcs = forM funcs \(k, mf) -> (k,) <$> runMaybeT do f <- liftMaybe mf let fstr = C.identToString (funName f) when (C.identToString (funName f) /= "main" || LoseMain `isIn` ctx) do exceptIf ("remove function " <> fstr <> " " <> show (funSize f), funPosition f) isStatic <- if funIsStatic f then split ("remove static from " <> fstr, funPosition f) (pure False) (pure True) else pure False pure f{funIsStatic = isStatic} -- try remove static functions2 <- reduce =<< reduce funmap functions3 <- forM functions2 \(k, mf) -> (k,) <$> runMaybeT do f <- liftMaybe mf params <- case funParams f of Params params False -> do params' <- forM params \p -> runMaybeT do p' <- liftMaybe p exceptIf ("remove parameter", funPosition f) pure p' pure (Params params' False) ow -> pure ow pure f{funParams = params} let functions''' = Map.fromList $ functions3 <> [ ( funName , Just $ Function { funIsStatic = False , funPosition = C.posOf funName , funSize = 0 , .. } ) | (C.builtinIdent -> funName, funReturns, funParams) <- [ ("fabsf", (Just CTNum), (Params [Just CTNum] False)) , ("fabs", (Just CTNum), (Params [Just CTNum] False)) ] ] structs' <- flip execStateT (structs ctx) do forM_ _structs \s -> modify' (Map.insert (structName s) (Just s)) let ctx' = ctx{functions = functions''', structs = structs'} res' <- evalStateT (mapM reduceCExternalDeclaration es) ctx' pure $ C.CTranslUnit (catMaybes res') ni reduceCExternalDeclaration :: (HasCallStack, MonadReduce Lab m) => C.CExternalDeclaration C.NodeInfo -> StateT Context m (Maybe (C.CExternalDeclaration C.NodeInfo)) reduceCExternalDeclaration r = case r of C.CFDefExt (C.CFunDef spec declr [] stmt ni) -> runMaybeT do ctx <- get guard (not $ any (shouldDeleteDeclSpec ctx) spec) let C.CDeclr mid dd Nothing [] ni2 = declr let (C.CFunDeclr (C.CFunParamsNew params b) attr ni3 : dd') = dd (pFilter, spec') <- case mid of Just fid -> do f <- liftMaybe (lookupFunction ctx fid) pure (funParams f, filterStorageModifiers (funIsStatic f) spec) Nothing -> do exceptIf ("remove function", C.posOf r) case params of [C.CDecl [C.CTypeSpec (C.CVoidType _)] [] _] -> pure (VoidParams, spec) _ow -> pure (Params (Just . snd <$> map (functionParameter ctx) params) False, spec) let (params', idents) = case pFilter of Params flt False -> filterParams ctx flt params _ow -> (params, []) labs <- flip collect (labelsOf stmt) \l -> do exceptIf ("remove label" <> show l, C.posOf l) pure l stmt' <- reduceCStatementOrEmptyBlock stmt StmtContext{stmtLabels = labs, stmtInLoop = False} $ foldr (uncurry addInlineExpr) ctx idents let dd'' = C.CFunDeclr (C.CFunParamsNew params' b) attr ni3 : dd' pure . C.CFDefExt $ C.CFunDef (inlineTypeDefsSpecs spec' ctx) (inlineTypeDefsCDeclarator (C.CDeclr mid dd'' Nothing [] ni2) ctx) [] stmt' ni -- Type definitions C.CDeclExt d@(C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) [item] ni) -> runMaybeT do let C.CDeclarationItem (C.CDeclr (Just ix) [] Nothing [] _) Nothing Nothing = item split ("Inline typedef" <> C.identToString ix, C.posOf ni) (modify (\ctx' -> addTypeDefs [ix] (ctype ctx' rst, ITInline rst) ctx') >> empty) do modify (\ctx' -> addTypeDefs [ix] (ctype ctx' rst, ITKeep) ctx') gets (C.CDeclExt <$> inlineTypeDefsCDeclaration d) -- The rest. C.CDeclExt (C.CDecl spec items ni) -> runMaybeT do ctx <- get let t = ctype ctx spec lift $ includeTypeDef r keep <- containsStructDeclaration spec -- Try to remove each declaration item (items', or -> isStatic) <- unzip <$> flip collect items \case di@(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit size) -> do case dd of (C.CFunDeclr params attr ni3) : rst -> do (dd', isStatic) <- case mid of Just fid -> do f <- liftMaybe (lookupFunction ctx fid) params' <- case funParams f of Params flt False -> do case params of C.CFunParamsNew params' b -> do let res = filterParams ctx flt params' pure . flip C.CFunParamsNew b . fst $ res C.CFunParamsOld _ -> notSupportedYet (di $> ()) ni2 _ow -> pure params pure (C.CFunDeclr params' attr ni3 : rst, funIsStatic f) Nothing -> do exceptIf ("remove function", C.posOf ni2) pure (dd, isStaticFromSpecs spec) pure (C.CDeclarationItem (C.CDeclr mid dd' Nothing [] ni2) einit size, isStatic) _dd -> do let Just t' = applyDerivedDeclarators dd (Just t) einit' <- reduceVariable t' mid einit ni2 pure (C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit' size, isStaticFromSpecs spec) a -> notSupportedYet (a $> ()) ni -- Somtimes we just declare a struct or a typedef. when (not keep && List.null items') do guard (AllowEmptyDeclarations `isIn` ctx) exceptIf ("remove declaration", C.posOf ni) decl' <- gets (inlineTypeDefsCDeclaration (C.CDecl (filterStorageModifiers isStatic spec) items' ni)) pure (C.CDeclExt decl') _r -> don'tHandle r wrapCCompound :: C.CStatement C.NodeInfo -> C.CStatement C.NodeInfo wrapCCompound = \case s@(C.CCompound{}) -> s s -> C.CCompound [] [C.CBlockStmt s] C.undefNode isStaticFromSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Bool isStaticFromSpecs = any \case (C.CStorageSpec (C.CStatic _)) -> True _ow -> False reduceVariable :: ( MonadReduce Lab m , MonadState Context m , MonadPlus m ) => CType -> Maybe C.Ident -> Maybe (C.CInitializer C.NodeInfo) -> C.NodeInfo -> m (Maybe (C.CInitializer C.NodeInfo)) reduceVariable t' mid einit ni = do case mid of Just vid -> do case einit of Just (C.CInitExpr e ni2) -> do ctx <- get e' <- reduceCExprOrZero e ctx split ("inline variable " <> C.identToString vid, C.posOf ni) do modify' (addInlineExpr vid (IEInline e')) empty do modify' (addInlineExpr vid (IEKeep t')) pure (Just (C.CInitExpr e' ni2)) -- TODO handle later Just (C.CInitList i ni2) -> split ("delete variable", C.posOf ni) (modify' (addInlineExpr vid IEDelete) >> empty) do modify' (addInlineExpr vid (IEKeep t')) pure (Just (C.CInitList i ni2)) Nothing -> split ("delete uninitialized variable", C.posOf vid) (modify' (addInlineExpr vid IEDelete) >> empty) do modify' (addInlineExpr vid (IEKeep t')) pure Nothing Nothing -> do exceptIf ("remove unnamed declaration item", C.posOf ni) pure einit reduceCCompoundBlockItem :: (MonadReduce Lab m, HasCallStack) => StmtContext -> C.CCompoundBlockItem C.NodeInfo -> StateT Context m [C.CCompoundBlockItem C.NodeInfo] reduceCCompoundBlockItem lab r = do case r of C.CBlockStmt smt -> do ctx <- get msmt <- runMaybeT $ reduceCStatement smt lab ctx case msmt of Just smt' -> do case smt' of C.CCompound [] ss _ -> whenSplit (all (\case C.CBlockStmt _ -> True; _ow -> False) ss) ("expand compound statment", C.posOf r) (pure ss) (pure [C.CBlockStmt smt']) _ow -> pure [C.CBlockStmt smt'] Nothing -> pure [] C.CBlockDecl (C.CDecl spec items ni) -> fmap (fromMaybe []) . runMaybeT $ do ctx <- get let t = ctype ctx spec keep <- containsStructDeclaration spec -- Try to remove each declaration item items' <- flip collect items \case C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit size -> do let Just t' = applyDerivedDeclarators dd (Just t) einit' <- reduceVariable t' mid einit ni2 pure (C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit' size) a -> notSupportedYet (a $> ()) ni -- Somtimes we just declare a struct or a typedef. when (not keep && List.null items') do guard (AllowEmptyDeclarations `isIn` ctx) exceptIf ("remove declaration", C.posOf ni) decl' <- gets (inlineTypeDefsCDeclaration (C.CDecl spec items' ni)) pure [C.CBlockDecl decl'] a -> don'tHandle a reduceCStatementOrEmptyBlock :: (MonadReduce Lab m, HasCallStack) => C.CStatement C.NodeInfo -> StmtContext -> Context -> m (C.CStatement C.NodeInfo) reduceCStatementOrEmptyBlock stmt ids ctx = do fromMaybe emptyBlock <$> runMaybeT ( wrapCCompound <$> reduceCStatement stmt ids ctx ) reduceCStatementOrEmptyExpr :: (MonadReduce Lab m, HasCallStack) => C.CStatement C.NodeInfo -> StmtContext -> Context -> m (C.CStatement C.NodeInfo) reduceCStatementOrEmptyExpr stmt ids ctx = do fromMaybe (C.CExpr Nothing C.undefNode) <$> runMaybeT (reduceCStatement stmt ids ctx) emptyBlock :: C.CStatement C.NodeInfo emptyBlock = C.CCompound [] [] C.undefNode data StmtContext = StmtContext { stmtLabels :: ![C.Ident] , stmtInLoop :: !Bool } deriving (Show, Eq) -- | Reduce given a list of required labels reduce a c statement, possibly into nothingness. reduceCStatement :: (MonadReduce Lab m, HasCallStack) => C.CStatement C.NodeInfo -> StmtContext -> Context -> MaybeT m (C.CStatement C.NodeInfo) reduceCStatement smt labs ctx = case smt of C.CCompound is cbi ni -> do cbi' <- lift $ evalStateT (mapM (reduceCCompoundBlockItem labs) cbi) ctx when (all List.null cbi') do exceptIf ("Remove compound", C.posOf ni) pure (C.CCompound is (concat cbi') ni) C.CWhile e s dow ni -> split ("remove while loop", C.posOf ni) do reduceCStatement s labs ctx do s' <- reduceCStatement s labs{stmtInLoop = True} ctx e' <- lift (reduceCExprOrZero e ctx) pure $ C.CWhile e' s' dow ni C.CExpr me ni -> do case me of Just e -> do if DoNoops `isIn` ctx then do e' <- maybeSplit ("change to noop", C.posOf smt) $ reduceCExpr e ctx pure $ C.CExpr e' ni else do re' <- liftMaybe $ reduceCExpr e ctx exceptIf ("remove expr statement", C.posOf smt) e' <- re' pure $ C.CExpr (Just e') ni Nothing -> do exceptIf ("remove expr statement", C.posOf smt) pure $ C.CExpr Nothing ni C.CReturn me ni -> do -- TODO: If function returntype is not struct return 0 case me of Just e -> do re' <- liftMaybe $ reduceCExpr e ctx exceptIf ("remove return statement", C.posOf smt) e' <- re' pure $ C.CReturn (Just e') ni Nothing -> do exceptIf ("remove return statement", C.posOf smt) pure $ C.CReturn Nothing ni C.CIf e s els ni -> do e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e ctx els' <- lift . runMaybeT $ do els' <- liftMaybe els reduceCStatement els' labs ctx ms' <- lift . runMaybeT $ reduceCStatement s labs ctx case (e', ms', els') of (Nothing, Nothing, Nothing) -> pure emptyBlock (Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni (Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni (Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni (Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode (Nothing, Nothing, Just x) -> pure x (Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni (Nothing, Just s', Nothing) -> pure s' C.CFor e1 e2 e3 s ni -> do case e1 of C.CForDecl (C.CDecl spec items ni') -> do let t = ctype ctx spec let spec' = inlineTypeDefsSpecs spec ctx (items', ctx') <- flip runStateT ctx $ flip collect items \case C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit size -> do einit' <- reduceVariable t mid einit ni' pure (C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit' size) a -> notSupportedYet a ni' e2' <- runMaybeT do e2' <- liftMaybe e2 re2' <- liftMaybe (reduceCExpr e2' ctx') exceptIf ("remove check", C.posOf e2') re2' e3' <- runMaybeT do e3' <- liftMaybe e3 re3' <- liftMaybe (reduceCExpr e3' ctx') exceptIf ("remove iterator", C.posOf e3') re3' let e2'' = if AllowInfiniteForLoops `isIn` ctx || isNothing e2 then e2' else e2' <|> Just zeroExpr s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx' -- Todo allow removal of these loops as well pure $ C.CFor (C.CForDecl (C.CDecl spec' items' ni')) e2'' e3' s' ni C.CForInitializing e -> do split ("remove the for loop", C.posOf ni) do reduceCStatement s labs ctx do e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' ctx) e2' <- runMaybeT do e2' <- liftMaybe e2 re2' <- liftMaybe (reduceCExpr e2' ctx) exceptIf ("remove check", C.posOf e2') re2' e3' <- runMaybeT do e3' <- liftMaybe e3 re3' <- liftMaybe (reduceCExpr e3' ctx) exceptIf ("remove iterator", C.posOf e3') re3' let e2'' = if AllowInfiniteForLoops `isIn` ctx || isNothing e2 then e2' else e2' <|> Just zeroExpr s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx pure $ C.CFor (C.CForInitializing e') e2'' e3' s' ni d -> don'tHandle d C.CLabel i s [] ni -> do if i `List.elem` stmtLabels labs then do s' <- lift $ reduceCStatementOrEmptyExpr s labs ctx pure $ C.CLabel i s' [] ni else do empty C.CGoto i ni -> if i `List.elem` stmtLabels labs then do exceptIf ("remove goto", C.posOf smt) pure $ C.CGoto i ni else empty C.CBreak n -> if stmtInLoop labs then do exceptIf ("remove break", C.posOf smt) pure $ C.CBreak n else empty C.CCont n -> if stmtInLoop labs then do exceptIf ("remove continue", C.posOf smt) pure $ C.CCont n else empty a -> don'tHandleWithPos a -- | If the condition is statisfied try to reduce to the a. whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a whenSplit cn lab a b | cn = split lab a b | otherwise = b maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a) maybeSplit lab = \case Just r -> do split lab (pure Nothing) (Just <$> r) Nothing -> do pure Nothing zeroExpr :: C.CExpression C.NodeInfo zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode) reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr reduceCExprOrZero expr ctx = do case reduceCExpr expr ctx of Just ex -> do r <- ex if r == zeroExpr then pure r else split ("replace by zero", C.posOf expr) (pure zeroExpr) (pure r) Nothing -> do pure zeroExpr {-# INLINE reduceCExprOrZero #-} reduceCExpr :: forall m. (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> Maybe (m C.CExpr) reduceCExpr expr ctx = case expr of C.CBinary o elhs erhs ni -> do if o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp] then do -- in this case we change type, so we need to keep the operation rl <- reduceCExpr elhs ctx rr <- reduceCExpr erhs ctx Just $ do l' <- rl r' <- rr pure $ C.CBinary o l' r' ni else do case reduceCExpr elhs ctx of Just elhs' -> case reduceCExpr erhs ctx of Just erhs' -> pure do split ("reduce to left", C.posOf elhs) elhs' do split ("reduce to right", C.posOf erhs) erhs' do l' <- elhs' r' <- erhs' pure $ C.CBinary o l' r' ni Nothing -> pure elhs' Nothing | otherwise -> fail "could not reduce left hand side" C.CAssign o elhs erhs ni -> case reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) of Just elhs' -> case reduceCExpr erhs ctx of Just erhs' -> pure do split ("reduce to left", C.posOf elhs) elhs' do split ("reduce to right", C.posOf erhs) erhs' do l' <- elhs' r' <- erhs' pure $ C.CAssign o l' r' ni Nothing -> fail "could not reduce right hand side" Nothing | otherwise -> fail "could not reduce left hand side" C.CVar i _ -> case Map.lookup i . inlineExprs $ ctx of Just mx -> case mx of IEKeep _ -> Just (pure expr) IEInline mx' | DisallowVariableInlining `isIn` ctx -> Nothing | otherwise -> Just (pure mx') IEDelete -> Nothing Nothing -> error ("Could not find " <> show (C.identToString i) <> " at " <> show (C.posOf expr) <> "\n" <> show (inlineExprs ctx)) C.CConst x -> Just do pure $ C.CConst x C.CUnary o elhs ni -> do elhs' <- reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) Just $ whenSplit (o `List.elem` [C.CPlusOp, C.CMinOp, C.CCompOp, C.CNegOp]) ("reduce to operant", C.posOf expr) elhs' do e <- elhs' pure $ C.CUnary o e ni C.CCall e es ni -> do case e of (C.CVar i _) -> case functions ctx Map.!? i of Just Nothing -> Nothing -- TODO improve -- Just $ do -- es' <- traverse (maybeSplit ("do without param", C.posOf e) . (`reduceCExpr` ctx)) es -- -- Not completely correct. -- case catMaybes es' of -- [] -> pure zeroExpr -- [e''] -> pure e'' -- es'' -> pure $ C.CComma es'' C.undefNode Just (Just fun) -> do let params :: [(Bool, C.CExpr)] = case funParams fun of Params params' False -> do catMaybes $ zipWith (\mt e' -> mt <&> \t -> (t /= CTStruct, e')) params' es _ow -> map (False,) es rargs :: [m C.CExpr] <- forM params \(canBeZero, e') -> do case reduceCExpr e' ctx of Just re -> Just $ whenSplit canBeZero ("do without param", C.posOf e') (pure zeroExpr) re Nothing | canBeZero -> Just (pure zeroExpr) | otherwise -> Nothing Just $ do es' <- sequence rargs pure $ C.CCall e es' ni -- Just (IEKeep CTAny) -> do -- let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx) -- res = map (`reduceCExpr` ctx) es -- case (re, catMaybes res) of -- (Nothing, []) -> Nothing -- (Nothing, [r]) -> Just r -- (_, _) -> Just do -- e' <- maybeSplit ("do without function", C.posOf e) re -- es' <- res & traverse (maybeSplit ("do without pram", C.posOf e)) -- case (e', catMaybes es') of -- (Nothing, []) -> pure zeroExpr -- (Nothing, [e'']) -> pure e'' -- (Nothing, es'') -> pure $ C.CComma es'' C.undefNode -- (Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni -- Just (IEKeep t) -> error ("unexpected type" <> show i <> show t) -- Just (IEInline x) -> error ("unexpected inline" <> show x) Nothing -> error ("could not find " <> show i) _ow -> notSupportedYet e ni -- do -- let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx) -- res = map (`reduceCExpr` ctx) es -- case (re, catMaybes res) of -- (Nothing, []) -> Nothing -- (Nothing, [r]) -> Just r -- (_, _) -> Just do -- e' <- maybeSplit ("do without function", C.posOf e) re -- es' <- res & traverse (maybeSplit ("do without pram", C.posOf e)) -- case (e', catMaybes es') of -- (Nothing, []) -> pure zeroExpr -- (Nothing, [e'']) -> pure e'' -- (Nothing, es'') -> pure $ C.CComma es'' C.undefNode -- (Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni C.CCond ec et ef ni -> do -- TODO: More fine grained reduction is possible here. Just $ do ec' <- reduceCExprOrZero ec ctx ef' <- reduceCExprOrZero ef ctx et' <- case et of Just et' -> Just <$> reduceCExprOrZero et' ctx Nothing -> pure Nothing pure $ C.CCond ec' et' ef' ni C.CCast decl e ni -> do re <- reduceCExpr e ctx Just do split ("don't cast", C.posOf ni) re do e' <- re pure (C.CCast (inlineTypeDefsCDeclaration decl ctx) e' ni) C.CIndex e1 e2 ni -> do -- TODO: Better reduction is posisble here. re1 <- reduceCExpr e1 ctx Just do e1' <- re1 e2' <- reduceCExprOrZero e2 ctx pure $ C.CIndex e1' e2' ni C.CComma items ni -> do let Just (x, rst) = List.uncons (reverse items) rx <- reduceCExpr x ctx Just do rst' <- foldr ( \e cc -> do maybeSplit ("remove expression", C.posOf e) (reduceCExpr e ctx) >>= \case Just e' -> (e' :) <$> cc Nothing -> cc ) (pure []) rst x' <- rx if List.null rst' then pure x' else pure $ C.CComma (reverse (x' : rst')) ni C.CMember e i l ni -> do re <- reduceCExpr e ctx Just do e' <- re pure (C.CMember e' i l ni) a -> don'tHandleWithPos a inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo inlineTypeDefsCDeclaration decl ctx = case decl of C.CDecl items decli ni -> C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni a -> don'tHandle a -- shouldDeleteFunction :: Context -> C.CFunctionDef C.NodeInfo -> Bool -- shouldDeleteFunction ctx (C.CFunDef spec _ _ _ _) = -- any (shouldDeleteDeclSpec ctx) spec shouldDeleteDeclaration :: Context -> C.CDeclaration C.NodeInfo -> Bool shouldDeleteDeclaration ctx decl = case decl of C.CDecl items decli _ -> any (shouldDeleteDeclSpec ctx) items || any shouldDeleteDeclItem decli a -> don'tHandle a where shouldDeleteDeclItem = \case C.CDeclarationItem a _ _ -> shouldDeleteDeclartor a a -> don'tHandle a shouldDeleteDeclartor = \case C.CDeclr _ def _ _ _ -> any shouldDeleteDerivedDeclartor def shouldDeleteDerivedDeclartor = \case C.CFunDeclr (C.CFunParamsNew x _) _ _ -> any (shouldDeleteDeclaration ctx) x C.CArrDeclr{} -> False C.CPtrDeclr _ _ -> False a -> don'tHandle a shouldDeleteDeclSpec :: Context -> C.CDeclarationSpecifier C.NodeInfo -> Bool shouldDeleteDeclSpec ctx = \case C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _) -> case Map.lookup idx . structs $ ctx of Just (Just _) -> False Just Nothing -> True Nothing -> error ("could not find struct:" <> show idx) C.CTypeSpec (C.CSUType (C.CStruct _ _ (Just c) _ _) _) -> any (shouldDeleteDeclaration ctx) c _ow -> False inlineTypeDefsSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Context -> [C.CDeclarationSpecifier C.NodeInfo] inlineTypeDefsSpecs r ctx = r & concatMap \case a@(C.CTypeSpec (C.CTypeDef idx _)) -> do case Map.lookup idx . typeDefs $ ctx of Just (_, ITKeep) -> [a] Just (_, ITInline res) -> res Nothing -> error ("could not find typedef:" <> show idx) -- a@(C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _)) -> -- case Map.lookup idx . structs $ ctx of -- Just (Just def) -> [C.CTypeSpec (C.CSUType def C.undefNode)] -- Just Nothing -> [a] -- Nothing -> error ("could not find struct:" <> show idx) C.CTypeSpec (C.CSUType (C.CStruct a b (Just c) d e) f) -> [C.CTypeSpec (C.CSUType (C.CStruct a b (Just $ map (`inlineTypeDefsCDeclaration` ctx) c) d e) f)] a -> [a] {-# NOINLINE inlineTypeDefsSpecs #-} inlineTypeDefsCDeclarator :: C.CDeclarator C.NodeInfo -> Context -> C.CDeclarator C.NodeInfo inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx = C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo inlineTypeDefsX ctx = \case C.CFunDeclr (C.CFunParamsNew x y) b c -> C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c C.CArrDeclr a b c -> C.CArrDeclr a b c C.CPtrDeclr a b -> C.CPtrDeclr a b a -> don'tHandle a inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo inlineTypeDefsCDI di ctx = case di of C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni a -> don'tHandle a identifiers :: forall a. (Data a) => a -> [C.Ident] identifiers d = appEndo (go d) [] where go :: forall a'. (Data a') => a' -> Endo [C.Ident] go d' = case cast d' of Just l -> Endo (l :) Nothing -> gmapQl (<>) mempty go d' -- functionName :: C.CFunctionDef C.NodeInfo -> Maybe C.Ident -- functionName = \case -- C.CFunDef _ (C.CDeclr ix _ _ _ _) _ _ _ -> ix notSupportedYet :: (HasCallStack, Show a, C.Pos n) => a -> n -> b notSupportedYet a ni = error (show a <> " at " <> show (C.posOf ni)) don'tHandle :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> b don'tHandle f = error (show (f $> ())) don'tHandleWithPos :: (HasCallStack, Functor f, Show (f ()), C.Pos (f C.NodeInfo)) => f C.NodeInfo -> b don'tHandleWithPos f = error (show (f $> ()) <> " at " <> show (C.posOf f)) lookupFunction :: (HasCallStack) => Context -> C.Ident -> Maybe Function lookupFunction ctx k = fromMaybe (error ("could not find function " <> C.identToString k)) $ functions ctx Map.!? k lookupStruct :: (HasCallStack) => Context -> C.Ident -> Maybe Struct lookupStruct ctx k = fromMaybe (error ("could not find struct " <> C.identToString k)) $ structs ctx Map.!? k labelsOf :: C.CStatement C.NodeInfo -> [C.Ident] labelsOf = \case C.CLabel i s [] _ -> i : labelsOf s C.CWhile _ s _ _ -> labelsOf s C.CCase _ s _ -> labelsOf s C.CDefault s _ -> labelsOf s C.CCompound _ ss _ -> ss & concatMap \case C.CBlockStmt s -> labelsOf s _ow -> [] C.CCases _ _ s _ -> labelsOf s C.CIf _ l r _ -> labelsOf l <> maybe [] labelsOf r C.CSwitch _ s _ -> labelsOf s C.CFor _ _ _ s _ -> labelsOf s _ow -> [] ctype :: (HasCallStack) => Context -> [C.CDeclarationSpecifier C.NodeInfo] -> CType ctype ctx xs = let ts = mapMaybe f xs in fromJust $ foldr ( \t t' -> case t' of Nothing -> Just t Just t'' | t == t'' -> Just t'' | otherwise -> error ("something is broken in the c-file" <> show ts) ) Nothing ts where f = \case (C.CTypeSpec tp) -> Just $ case tp of C.CVoidType _ -> CTAny C.CCharType _ -> CTNum C.CShortType _ -> CTNum C.CIntType _ -> CTNum C.CFloatType _ -> CTNum C.CDoubleType _ -> CTNum C.CSignedType _ -> CTNum C.CUnsigType _ -> CTNum C.CBoolType _ -> CTNum C.CLongType _ -> CTNum C.CInt128Type _ -> CTNum C.CFloatNType{} -> CTNum C.CSUType _ _ -> CTStruct C.CEnumType _ _ -> CTNum C.CTypeDef idx _ -> case Map.lookup idx . typeDefs $ ctx of Just (t, ITKeep) -> t Just (t, ITInline _) -> t Nothing -> error ("could not find typedef: " <> show (C.identToString idx)) a -> notSupportedYet a C.undefNode _ow -> Nothing data Context = Context { keywords :: !(Set.Set Keyword) , typeDefs :: !(Map.Map C.Ident (CType, InlineType)) , inlineExprs :: !(Map.Map C.Ident InlineExpr) , structs :: !(Map.Map C.Ident (Maybe Struct)) , functions :: !(Map.Map C.Ident (Maybe Function)) } deriving (Show) data InlineType = ITKeep | ITInline ![C.CDeclarationSpecifier C.NodeInfo] deriving (Show, Eq) data InlineExpr = IEDelete | IEInline !C.CExpr | IEKeep !CType deriving (Show, Eq) data Keyword = LoseMain | DoNoops | InlineTypeDefs | NoSemantics | AllowEmptyDeclarations | DisallowVariableInlining | AllowInfiniteForLoops deriving (Show, Read, Enum, Eq, Ord) type Lab = (String, C.Position) data CType = CTNum | CTStruct | CTPointer | CTFun ![Maybe CType] | CTAny deriving (Show, Eq) defaultReduceCWithKeywords :: (MonadReduce (String, C.Position) m) => [Keyword] -> C.CTranslUnit -> m C.CTranslUnit defaultReduceCWithKeywords keywords a = reduceCTranslUnit a (defaultContext{keywords = Set.fromList keywords}) {-# SPECIALIZE defaultReduceCWithKeywords :: [Keyword] -> C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-} defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit defaultReduceC a = reduceCTranslUnit a defaultContext {-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-} addTypeDefs :: [C.Ident] -> (CType, InlineType) -> Context -> Context addTypeDefs ids cs Context{..} = Context { typeDefs = foldl' (\a i -> Map.insert i cs a) typeDefs ids , .. } addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context addInlineExpr i e Context{..} = Context { inlineExprs = Map.insert i e inlineExprs , .. } addKeyword :: Keyword -> Context -> Context addKeyword k Context{..} = Context { keywords = Set.insert k keywords , .. } defaultContext :: Context defaultContext = Context { keywords = Set.fromList [] , typeDefs = Map.empty , inlineExprs = Map.fromList [ (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep CTNum) , (C.builtinIdent "__FUNCTION__", IEKeep CTNum) ] , structs = Map.empty , functions = Map.empty } isIn :: Keyword -> Context -> Bool isIn k = Set.member k . keywords prettyIdent :: C.Identifier C.NodeInfo -> [Char] prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a) data Struct = Struct { structName :: !C.Ident , structFields :: ![(Maybe C.Ident, Maybe CType)] , structTag :: !C.CStructTag , structPosition :: !C.Position } deriving (Show, Eq) findStructs :: forall m . (Monoid m) => (Struct -> m) -> Context -> C.CExternalDeclaration C.NodeInfo -> m findStructs inject ctx = \case C.CDeclExt decl -> findStructsInDeclaration decl C.CFDefExt (C.CFunDef spec declr params stmt _ni) -> findStructsInDeclarator declr <> foldMap findStructsInSpecifier spec <> foldMap findStructsInDeclaration params <> findStructsInStatement stmt C.CAsmExt _ _ -> mempty where toStruct (C.CStruct tag mid mfields _attr ni) = fromMaybe mempty do fields <- mfields let fields' = fmap Just <$> concatMap (structField ctx) fields sid <- mid pure $ inject (Struct sid fields' tag (C.posOf ni)) -- TODO currently we do not look for structs inside of expressions. -- (Can hide in CCompoundLiterals) findStructsInStatement = \case C.CCompound _ blocks _ -> flip foldMap blocks \case C.CBlockDecl decl -> findStructsInDeclaration decl C.CBlockStmt stmt -> findStructsInStatement stmt a@(C.CNestedFunDef _) -> notSupportedYet (void a) a C.CFor (C.CForDecl decl) _ _ _ _ -> findStructsInDeclaration decl _ow -> mempty findStructsInDeclarator = \case C.CDeclr _ dd Nothing [] _ -> flip foldMap dd \case C.CPtrDeclr _ _ -> mempty C.CArrDeclr{} -> mempty C.CFunDeclr (C.CFunParamsOld _) _ _ -> mempty C.CFunDeclr (C.CFunParamsNew params _) _ _ -> foldMap findStructsInDeclaration params a -> notSupportedYet (a $> ()) a findStructsInDeclaration = \case C.CDecl spec items ni -> foldMap findStructsInSpecifier spec <> flip foldMap items \case C.CDeclarationItem d _minit _mexpr -> do findStructsInDeclarator d a -> notSupportedYet (a $> ()) ni a@(C.CStaticAssert _ _ ni) -> notSupportedYet (a $> ()) ni findStructsInSpecifier = \case C.CTypeSpec (C.CSUType cu _) -> toStruct cu _ow -> mempty data Function = Function { funName :: !C.Ident , funParams :: !FunctionParams , funReturns :: !(Maybe CType) , funIsStatic :: !Bool , funSize :: !Int , funPosition :: !C.Position } deriving (Show, Eq) data FunctionParams = VoidParams | Params ![Maybe CType] !Bool deriving (Show, Eq) findFunctions :: (Monoid m) => (Function -> m) -> Context -> C.CExternalDeclaration C.NodeInfo -> m findFunctions inject ctx = \case C.CFDefExt (C.CFunDef spec declr [] _ ni) -> findFunctionsInDeclarator ni spec declr -- # for now let's not anlyse function declarations. C.CFDefExt def@(C.CFunDef{}) -> notSupportedYet (void def) def C.CDeclExt (C.CDecl spec items ni) -> flip foldMap items \case C.CDeclarationItem declr Nothing Nothing -> findFunctionsInDeclarator ni spec declr _ow -> mempty C.CDeclExt a@(C.CStaticAssert{}) -> notSupportedYet (void a) a C.CAsmExt _ _ -> mempty where findFunctionsInDeclarator ni spec = \case (C.CDeclr mid (functionParameters ctx -> Just (funParams, change)) Nothing [] _) -> case mid of Just funName -> inject Function{..} where funReturns = change $ case ctype ctx spec of CTAny -> Nothing t -> Just t funIsStatic = isStaticFromSpecs spec funSize = fromMaybe 0 (C.lengthOfNode ni) funPosition = C.posOf ni Nothing -> mempty _ow -> mempty -- \| Returns nothing if void is used functionParameters :: Context -> [C.CDerivedDeclarator C.NodeInfo] -> Maybe (FunctionParams, Maybe CType -> Maybe CType) functionParameters ctx = \case (C.CFunDeclr (C.CFunParamsNew x b) _ _) : rst -> case x of [C.CDecl [C.CTypeSpec (C.CVoidType _)] _ _] -> Just (VoidParams, applyDerivedDeclarators rst) params -> Just ( Params (fmap (Just . snd) . map (functionParameter ctx) $ params) b , applyDerivedDeclarators rst ) _ow -> Nothing applyDerivedDeclarators :: [C.CDerivedDeclarator C.NodeInfo] -> Maybe CType -> Maybe CType applyDerivedDeclarators [] ct = ct applyDerivedDeclarators _ _ = Just CTPointer functionParameter :: Context -> C.CDeclaration C.NodeInfo -> (Maybe C.Ident, CType) functionParameter ctx = \case C.CDecl spec items _ -> let t = ctype ctx spec in (asum (map name items), t) a@(C.CStaticAssert _ _ n) -> notSupportedYet a n structField :: Context -> C.CDeclaration C.NodeInfo -> [(Maybe C.Ident, CType)] structField ctx = \case C.CDecl spec items _ -> let t = ctype ctx spec in map (\i -> (name i, t)) items a@(C.CStaticAssert _ _ n) -> notSupportedYet a n class Named f where name :: f a -> Maybe (C.Identifier a) instance Named C.CDeclarator where name (C.CDeclr idx _ _ _ _) = idx instance Named C.CDeclarationItem where name = \case C.CDeclarationItem decl _ _ -> name decl C.CDeclarationExpr _ -> Nothing includeTypeDef :: (Monad m) => C.CExternalDeclaration C.NodeInfo -> StateT Context m () includeTypeDef = \case C.CDeclExt (C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) decl _) -> do let [ids] = identifiers decl modify (\ctx -> addTypeDefs [ids] (ctype ctx rst, ITInline rst) ctx) _ow -> pure () containsStructDeclaration :: (MonadPlus m, MonadState Context m) => [C.CDeclarationSpecifier C.NodeInfo] -> m Bool containsStructDeclaration spec = or <$> forM spec \case -- Is a struct definition C.CTypeSpec (C.CSUType (C.CStruct _ mid def _ _) _) -> case mid of Just sid -> do -- Delete if struct is deleted. ctx <- get _ <- liftMaybe (lookupStruct ctx sid) case def of Just _ -> pure True Nothing -> pure False Nothing -> pure False _ow -> pure False filterParams :: Context -> [Maybe CType] -> [C.CDeclaration C.NodeInfo] -> ([C.CDeclaration C.NodeInfo], [(C.Ident, InlineExpr)]) filterParams ctx typefilter params = flip evalState typefilter do (params', mapping) <- flip mapAndUnzipM params \case decl@(C.CDecl def items l) -> do t' <- state (\(t : tps) -> (t, tps)) case t' of Just t | not (shouldDeleteDeclaration ctx decl) -> do let defs = [(idx', IEKeep t) | i <- items, idx' <- maybeToList (name i)] pure ([C.CDecl def items l], defs) _ow -> do let defs = [(idx', IEDelete) | i <- items, idx' <- maybeToList (name i)] pure ([], defs) a' -> don'tHandleWithPos a' pure (concat params', concat mapping) filterStorageModifiers :: Bool -> [C.CDeclarationSpecifier C.NodeInfo] -> [C.CDeclarationSpecifier C.NodeInfo] filterStorageModifiers isStatic = filter \case C.CStorageSpec (C.CStatic _) -> isStatic C.CFunSpec (C.CInlineQual _) -> isStatic _ow -> True