{-# LANGUAGE BlockArguments #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE NoMonomorphismRestriction #-} module ReduceC ( defaultReduceC, defaultReduceCWithKeywords, -- reduceCTranslUnit, -- * Context Context (..), defaultContext, -- * Helpers prettyIdent, ) where import Control.Monad.Reduce import Data.Data import Data.Foldable import Data.Function import Data.Functor import qualified Data.List as List import qualified Data.Map.Strict as Map import Data.Maybe import qualified Data.Set as Set import Data.Vector.Internal.Check (HasCallStack) -- import Debug.Trace -- -- Todo stuckt names import Control.Applicative import Control.Monad import qualified Control.Monad.IRTree as IRTree import Control.Monad.State import Control.Monad.Trans.Maybe import Data.Monoid import qualified Language.C as C import qualified Language.C.Data.Ident as C data Context = Context { keywords :: !(Set.Set Keyword) , typeDefs :: !(Map.Map C.Ident (CType, InlineType)) , inlineExprs :: !(Map.Map C.Ident InlineExpr) , structs :: !(Map.Map C.Ident InlineStruct) } deriving (Show) data InlineType = ITKeep | ITInline ![C.CDeclarationSpecifier C.NodeInfo] deriving (Show, Eq) data InlineStruct = ISDelete | ISKeep deriving (Show, Eq) data InlineExpr = IEDelete | IEInline !C.CExpr | IEKeep !CType deriving (Show, Eq) data Keyword = LoseMain | DoNoops | InlineTypeDefs | NoSemantics | AllowEmptyDeclarations | DisallowVariableInlining | AllowInfiniteForLoops deriving (Show, Read, Enum, Eq, Ord) type Lab = (String, C.Position) defaultReduceCWithKeywords :: (MonadReduce (String, C.Position) m) => [Keyword] -> C.CTranslUnit -> m C.CTranslUnit defaultReduceCWithKeywords keywords a = reduceCTranslUnit a (defaultContext{keywords = Set.fromList keywords}) {-# SPECIALIZE defaultReduceCWithKeywords :: [Keyword] -> C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-} defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit defaultReduceC a = reduceCTranslUnit a defaultContext {-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-} addTypeDefs :: [C.Ident] -> (CType, InlineType) -> Context -> Context addTypeDefs ids cs Context{..} = Context { typeDefs = foldl' (\a i -> Map.insert i cs a) typeDefs ids , .. } addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context addInlineExpr i e Context{..} = Context { inlineExprs = Map.insert i e inlineExprs , .. } addKeyword :: Keyword -> Context -> Context addKeyword k Context{..} = Context { keywords = Set.insert k keywords , .. } addInlineStruct :: C.Ident -> InlineStruct -> Context -> Context addInlineStruct k is Context{..} = Context { structs = Map.insert k is structs , .. } defaultContext :: Context defaultContext = Context { keywords = Set.fromList [] , typeDefs = Map.empty , inlineExprs = Map.fromList [ (C.builtinIdent "fabsf", IEKeep (CTFun [Just CTInt, Just CTInt])) , (C.builtinIdent "fabs", IEKeep (CTFun [Just CTInt, Just CTInt])) , (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep CTInt) , (C.builtinIdent "__FUNCTION__", IEKeep CTInt) ] , structs = Map.empty } isIn :: Keyword -> Context -> Bool isIn k = Set.member k . keywords prettyIdent :: C.Identifier C.NodeInfo -> [Char] prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a) reduceCTranslUnit :: (MonadReduce Lab m) => C.CTranslationUnit C.NodeInfo -> Context -> m (C.CTranslationUnit C.NodeInfo) reduceCTranslUnit (C.CTranslUnit es ni) ctx = do res' <- evalStateT (mapM (StateT . reduceCExternalDeclaration) es) ctx es' <- sequence . catMaybes $ res' pure $ C.CTranslUnit es' ni reduceCExternalDeclaration :: (MonadReduce Lab m) => C.CExternalDeclaration C.NodeInfo -> Context -> m (Maybe (m (C.CExternalDeclaration C.NodeInfo)), Context) reduceCExternalDeclaration r ctx = case r of C.CFDefExt fun | not (LoseMain `isIn` ctx) && maybe False (("main" ==) . C.identToString) (functionName fun) -> do pure (Just $ C.CFDefExt <$> reduceCFunDef fun ctx, ctx) | otherwise -> case functionName fun of Just fid | shouldDeleteFunction ctx fun -> do pure (Nothing, addInlineExpr fid IEDelete ctx) | otherwise -> do let nctx = ctx & foldr \case (Just t, Just i) -> addInlineExpr i (IEKeep t) (Nothing, Just i) -> addInlineExpr i IEDelete (_, Nothing) -> id let red fun' ps = reduceCFunDef fun' (nctx ps) case Map.lookup fid . inlineExprs $ ctx of Just (IEKeep (CTFun args)) -> do (fun', ps) <- reduceParamsTo args fun pure ( Just (C.CFDefExt <$> red fun' ps) , addInlineExpr fid (IEKeep (CTFun (map fst ps))) ctx ) _ow -> do split ("remove function " <> C.identToString fid, C.posOf r) (pure (Nothing, addInlineExpr fid IEDelete ctx)) do (fun', ps) <- reduceParams ctx fun pure ( Just (C.CFDefExt <$> red fun' ps) , addInlineExpr fid (IEKeep (CTFun (map fst ps))) ctx ) Nothing | shouldDeleteFunction ctx fun -> do pure (Nothing, ctx) | otherwise -> do split ("remove function", C.posOf r) (pure (Nothing, ctx)) (pure (Just (C.CFDefExt <$> reduceCFunDef fun ctx), ctx)) C.CDeclExt decl -> do (decl', ctx') <- handleDecl decl ctx case decl' of Just d -> pure (Just (C.CDeclExt <$> d), ctx') Nothing -> pure (Nothing, ctx') _r -> don'tHandle r data StructDef = StructDef { structId :: !C.Ident , fieldIds :: ![C.Ident] , structDef :: !C.CStructUnion } deriving (Show, Eq) structIds :: (Foldable f) => f (C.CDeclarationSpecifier C.NodeInfo) -> [StructDef] structIds = concatMap \case C.CTypeSpec (C.CSUType (C.CStruct a (Just n) (Just ma) b c) _) -> [ StructDef n [ x | C.CDecl _ itms _ <- ma , C.CDeclarationItem (C.CDeclr (Just x) _ _ _ _) _ _ <- itms ] (C.CStruct a (Just n) (Just ma) b c) ] _ow -> [] trySplit :: (MonadReduce l m, Eq a) => l -> a -> (a -> a) -> m a trySplit l a action = do let a' = action a if a /= a' then split l (pure a') (pure a) else pure a reduceCFunDef :: (MonadReduce Lab m, HasCallStack) => C.CFunctionDef C.NodeInfo -> Context -> m (C.CFunctionDef C.NodeInfo) reduceCFunDef (C.CFunDef spc dec cdecls smt ni) ctx = do spc1 <- trySplit ("remove static", C.posOf ni) spc $ filter \case C.CStorageSpec (C.CStatic _) -> False _ow -> True spc2 <- trySplit ("remove inline", C.posOf ni) spc1 $ filter \case C.CFunSpec (C.CInlineQual _) -> False _ow -> True let labs = labelsOf smt labs' <- foldr (\l r -> split ("remove label" <> show l, C.posOf l) r $ (l :) <$> r) (pure []) labs smt' <- reduceCStatementOrEmptyBlock smt labs' ctx pure $ C.CFunDef (inlineTypeDefsSpecs spc2 ctx) (inlineTypeDefsCDeclarator dec ctx) (map (`inlineTypeDefsCDeclaration` ctx) cdecls) smt' ni labelsOf :: C.CStatement C.NodeInfo -> [C.Ident] labelsOf = \case C.CLabel i s [] _ -> i : labelsOf s C.CWhile _ s _ _ -> labelsOf s C.CCase _ s _ -> labelsOf s C.CDefault s _ -> labelsOf s C.CCompound _ ss _ -> ss & concatMap \case C.CBlockStmt s -> labelsOf s _ow -> [] C.CCases _ _ s _ -> labelsOf s C.CIf _ l r _ -> labelsOf l <> maybe [] labelsOf r C.CSwitch _ s _ -> labelsOf s C.CFor _ _ _ s _ -> labelsOf s _ow -> [] reduceParamsTo :: (MonadReduce Lab m) => [Maybe CType] -> C.CFunctionDef C.NodeInfo -> m (C.CFunctionDef C.NodeInfo, [(Maybe CType, Maybe (C.Identifier C.NodeInfo))]) reduceParamsTo types (C.CFunDef a (C.CDeclr b declrs c d e) f g h) = types & evalStateT do (unzip -> (declrs', defs)) <- declrs & mapM \case C.CFunDeclr (C.CFunParamsNew decls i) j k -> do (unzip -> (decls', defs)) <- decls & mapM \case C.CDecl def items l -> do (unzip -> (items', defs)) <- items & mapM \case a'@(C.CDeclarationItem (C.CDeclr idx _ _ _ _) _ _) -> do t' <- state (\(t : tps) -> (t, tps)) case t' of Just t -> pure ([a'], [(Just t, idx)]) Nothing -> pure ([], [(Nothing, idx)]) a' -> notSupportedYet a' k case concat items' of [] -> pure ([], concat defs) items'' -> pure ([C.CDecl def items'' l], concat defs) a' -> don'tHandleWithPos a' pure (C.CFunDeclr (C.CFunParamsNew (concat decls') i) j k, concat defs) ow -> pure (ow, []) pure (C.CFunDef a (C.CDeclr b declrs' c d e) f g h, concat defs) reduceParams' :: (MonadReduce Lab m) => Context -> [C.CDerivedDeclarator C.NodeInfo] -> m ([C.CDerivedDeclarator C.NodeInfo], [[(Maybe CType, Maybe (C.Identifier C.NodeInfo))]]) reduceParams' ctx declrs = do (unzip -> (declrs', defs)) <- declrs & mapM \case C.CFunDeclr (C.CFunParamsNew decls i) j k -> do (unzip -> (decls', defs)) <- decls & mapM \case a@(C.CDecl def items l) -> do (unzip -> (items', defs)) <- items & mapM \case a'@(C.CDeclarationItem (C.CDeclr idx _ _ _ _) _ _) -> if shouldDeleteDeclaration ctx a then pure ([], [(Nothing, idx)]) else split ("remove parameter", C.posOf k) (pure ([], [(Nothing, idx)])) (pure ([a'], [(Just (ctype ctx def), idx)])) a' -> notSupportedYet a' k case concat items' of [] -> pure ([], concat defs) items'' -> pure ([C.CDecl def items'' l], concat defs) a' -> don'tHandleWithPos a' pure (C.CFunDeclr (C.CFunParamsNew (concat decls') i) j k, [concat defs]) ow -> pure (ow, []) pure (declrs', concat defs) reduceParams :: (MonadReduce Lab m) => Context -> C.CFunctionDef C.NodeInfo -> m (C.CFunctionDef C.NodeInfo, [(Maybe CType, Maybe C.Ident)]) reduceParams ctx (C.CFunDef a (C.CDeclr b declrs c d e) f g h) = do (declrs', defs) <- reduceParams' ctx declrs pure (C.CFunDef a (C.CDeclr b declrs' c d e) f g h, concat defs) ctype :: Context -> [C.CDeclarationSpecifier C.NodeInfo] -> CType ctype ctx xs = let ts = mapMaybe f xs in fromJust $ foldr ( \t t' -> case t' of Nothing -> Just t Just t'' | t == t'' -> Just t'' | otherwise -> error ("something is broken in the c-file" <> show ts) ) Nothing ts where f = \case (C.CTypeSpec tp) -> Just $ case tp of C.CVoidType _ -> CTAny C.CCharType _ -> CTInt C.CShortType _ -> CTInt C.CIntType _ -> CTInt C.CFloatType _ -> CTInt C.CDoubleType _ -> CTInt C.CSignedType _ -> CTInt C.CUnsigType _ -> CTInt C.CBoolType _ -> CTInt C.CLongType _ -> CTInt C.CInt128Type _ -> CTInt C.CFloatNType{} -> CTInt C.CSUType _ _ -> CTStruct C.CEnumType _ _ -> CTInt C.CTypeDef idx _ -> case Map.lookup idx . typeDefs $ ctx of Just (t, ITKeep) -> t Just (t, ITInline _) -> t Nothing -> error ("could not find typedef:" <> show idx) a -> notSupportedYet a C.undefNode _ow -> Nothing reduceCCompoundBlockItem :: (MonadReduce Lab m, HasCallStack) => [C.Ident] -> C.CCompoundBlockItem C.NodeInfo -> StateT Context m [C.CCompoundBlockItem C.NodeInfo] reduceCCompoundBlockItem lab r = do case r of C.CBlockStmt smt -> do ctx <- get msmt <- runMaybeT $ reduceCStatement smt lab ctx case msmt of Just smt' -> do case smt' of C.CCompound [] ss _ -> split ("expand compound statment", C.posOf r) (pure ss) (pure [C.CBlockStmt smt']) _ow -> pure [C.CBlockStmt smt'] Nothing -> pure [] C.CBlockDecl declr -> do ctx <- get (declr', ctx') <- handleDecl declr ctx put ctx' case declr' of Just d -> do d' <- C.CBlockDecl <$> d pure [d'] Nothing -> pure [] a -> don'tHandle a handleDecl :: (MonadReduce Lab m) => C.CDeclaration C.NodeInfo -> Context -> m (Maybe (m (C.CDeclaration C.NodeInfo)), Context) handleDecl d ctx = case inlineTypeDefsCDeclaration d ctx of -- A typedef C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) decl _ -> do let [ids] = identifiers decl whenSplit (InlineTypeDefs `isIn` ctx) ("inline typedef " <> C.identToString ids, C.posOf d) (pure (Nothing, addTypeDefs [ids] (ctype ctx rst, ITInline rst) ctx)) (pure (Just (pure d), addTypeDefs [ids] (ctype ctx rst, ITKeep) ctx)) -- A const d'@(C.CDecl spc decl ni') -> do (decl', ctx') <- foldr ( reduceCDeclarationItem (shouldDeleteDeclaration ctx d') (ctype ctx spc) ) (pure ([], ctx)) decl let fn = do spc1 <- trySplit ("remove static", C.posOf ni') spc $ filter \case C.CStorageSpec (C.CStatic _) -> False _ow -> True pure $ C.CDecl spc1 decl' ni' case (decl', structIds spc) of ([], []) | AllowEmptyDeclarations `isIn` ctx' -> split ("remove empty declaration", C.posOf d) (pure (Nothing, ctx')) do pure (Just fn, ctx') | otherwise -> pure (Nothing, ctx') ([], stcts) -> split ("remove declaration", C.posOf d) (pure (Nothing, foldr (\(StructDef k _ _) -> addInlineStruct k ISDelete) ctx' stcts)) do pure (Just fn, foldr (\(StructDef k _ _) -> addInlineStruct k ISKeep) ctx' stcts) (_, stcts) -> pure (Just fn, foldr (\(StructDef k _ _) -> addInlineStruct k ISKeep) ctx' stcts) a -> don'tHandleWithPos a reduceCDeclarationItem :: (MonadReduce Lab m) => Bool -> CType -> C.CDeclarationItem C.NodeInfo -> m ([C.CDeclarationItem C.NodeInfo], Context) -> m ([C.CDeclarationItem C.NodeInfo], Context) reduceCDeclarationItem shouldDelete t d ma = case d of C.CDeclarationItem dr@(C.CDeclr (Just i) [] Nothing [] ni) (Just (C.CInitExpr c ni')) Nothing -> do (ds, ctx) <- ma c' <- fromMaybe (pure zeroExpr) (reduceCExpr c ctx) if shouldDelete then pure (ds, addInlineExpr i (IEInline c') ctx) else split ("inline variable " <> C.identToString i, C.posOf ni) (pure (ds, addInlineExpr i (IEInline c') ctx)) ( pure ( inlineTypeDefsCDI (C.CDeclarationItem dr (Just (C.CInitExpr c' ni')) Nothing) ctx : ds , addInlineExpr i (IEKeep t) ctx ) ) C.CDeclarationItem (C.CDeclr (Just i) a Nothing b ni) ex Nothing -> do (ds, ctx) <- ma if shouldDelete then pure (ds, addInlineExpr i IEDelete ctx) else do ex' <- case ex of Just ix -> maybeSplit ("remove initializer", C.posOf ni) (reduceCInitializer ix ctx) Nothing -> pure Nothing (a', t') <- if C.identToString i == "printf" then pure (a, CTAny) else do (a', defs) <- reduceParams' ctx a let t' = case defs of [args] -> CTFun (map fst args) [] -> t _x -> error ("Unexpected" <> unlines (map show _x) <> show (C.posOf ni)) pure (a', t') let d' = C.CDeclarationItem (C.CDeclr (Just i) a' Nothing b ni) ex' Nothing split ("remove variable " <> C.identToString i, C.posOf ni) (pure (ds, addInlineExpr i IEDelete ctx)) (pure (inlineTypeDefsCDI d' ctx : ds, addInlineExpr i (IEKeep t') ctx)) a@(C.CDeclarationItem (C.CDeclr _ _ _ _ ni) _ _) -> do don'tHandleWithNodeInfo a ni a -> don'tHandle a reduceCInitializer :: (MonadReduce Lab m) => C.CInitializer C.NodeInfo -> Context -> Maybe (m (C.CInitializer C.NodeInfo)) reduceCInitializer a ctx = case a of C.CInitExpr e ni' -> do rm <- reduceCExpr e ctx Just $ (`C.CInitExpr` ni') <$> rm C.CInitList (C.CInitializerList items) ni -> do ritems <- forM items \case ([], it) -> fmap ([],) <$> reduceCInitializer it ctx (as, _) -> notSupportedYet (fmap noinfo as) ni Just $ (`C.CInitList` ni) . C.CInitializerList <$> sequence ritems reduceCStatementOrEmptyBlock :: (MonadReduce Lab m, HasCallStack) => C.CStatement C.NodeInfo -> [C.Ident] -> Context -> m (C.CStatement C.NodeInfo) reduceCStatementOrEmptyBlock stmt ids ctx = do fromMaybe emptyBlock <$> runMaybeT (reduceCStatement stmt ids ctx) emptyBlock :: C.CStatement C.NodeInfo emptyBlock = C.CCompound [] [] C.undefNode -- | Reduce given a list of required labels reduce a c statement, possibly into nothingness. reduceCStatement :: (MonadReduce Lab m, HasCallStack) => C.CStatement C.NodeInfo -> [C.Ident] -> Context -> MaybeT m (C.CStatement C.NodeInfo) reduceCStatement smt labs ctx = case smt of C.CCompound is cbi ni -> do cbi' <- lift $ evalStateT (mapM (reduceCCompoundBlockItem labs) cbi) ctx case concat cbi' of [] -> do exceptIf ("remove empty compound", C.posOf smt) pure (C.CCompound is [] ni) ccbi -> pure (C.CCompound is ccbi ni) C.CWhile e s dow ni -> do s' <- reduceCStatement s labs ctx e' <- lift (reduceCExprOrZero e ctx) pure $ C.CWhile e' s' dow ni C.CExpr me ni -> do case me of Just e -> do if DoNoops `isIn` ctx then do e' <- maybeSplit ("change to noop", C.posOf smt) $ reduceCExpr e ctx pure $ C.CExpr e' ni else do re' <- liftMaybe $ reduceCExpr e ctx exceptIf ("remove expr statement", C.posOf smt) e' <- re' pure $ C.CExpr (Just e') ni Nothing -> do exceptIf ("remove expr statement", C.posOf smt) pure $ C.CExpr Nothing ni C.CReturn me ni -> do -- TODO: If function returntype is not struct return 0 case me of Just e -> do re' <- liftMaybe $ reduceCExpr e ctx exceptIf ("remove return statement", C.posOf smt) e' <- re' pure $ C.CReturn (Just e') ni Nothing -> do exceptIf ("remove return statement", C.posOf smt) pure $ C.CReturn Nothing ni C.CIf e s els ni -> do e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e ctx els' <- lift . runMaybeT $ do els' <- liftMaybe els reduceCStatement els' labs ctx ms' <- lift . runMaybeT $ reduceCStatement s labs ctx case (e', ms', els') of (Nothing, Nothing, Nothing) -> pure emptyBlock (Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni (Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni (Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni (Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode (Nothing, Nothing, Just x) -> pure x (Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni (Nothing, Just s', Nothing) -> pure s' C.CFor e1 e2 e3 s ni -> do (me1', ctx') <- case e1 of C.CForDecl d@(C.CDecl rec decl ni') -> do (decl', ctx') <- foldr (reduceCDeclarationItem (shouldDeleteDeclaration ctx d) (ctype ctx rec)) (pure ([], ctx)) decl res <- if null decl' then if AllowEmptyDeclarations `isIn` ctx' then split ("remove empty declaration", C.posOf ni') (pure Nothing) (pure $ Just $ C.CForDecl (C.CDecl rec decl' ni')) else pure Nothing else pure $ Just $ C.CForDecl (C.CDecl rec decl' ni') pure (res, ctx') C.CForInitializing e -> do e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' ctx) split ("remove empty declaration", C.posOf ni) (pure (Nothing, ctx)) (pure (Just $ C.CForInitializing e', ctx)) d -> don'tHandle d s' <- reduceCStatementOrEmptyBlock s labs ctx' let forloop n = do e2' <- runMaybeT do e2' <- liftMaybe e2 re2' <- liftMaybe (reduceCExpr e2' ctx') exceptIf ("remove check", C.posOf e2') re2' e3' <- runMaybeT do e3' <- liftMaybe e3 re3' <- liftMaybe (reduceCExpr e3' ctx') exceptIf ("remove iterator", C.posOf e3') re3' let e2'' = if AllowInfiniteForLoops `isIn` ctx || isNothing e2 then e2' else e2' <|> Just zeroExpr pure $ C.CFor n e2'' e3' s' ni case me1' of Nothing -> do split ("remove the for loop", C.posOf smt) (pure s') do forloop (C.CForInitializing Nothing) Just e1' -> do forloop e1' C.CLabel i s [] ni -> do if i `List.elem` labs then do s' <- lift $ reduceCStatementOrEmptyBlock s labs ctx pure $ C.CLabel i s' [] ni else do empty C.CGoto i ni -> if i `List.elem` labs then pure $ C.CGoto i ni else empty C.CBreak _ -> defaultBehavior C.CCont _ -> defaultBehavior a -> don'tHandleWithPos a where defaultBehavior = split ("remove statement", C.posOf smt) empty (pure smt) -- | If the condition is statisfied try to reduce to the a. whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a whenSplit cn lab a b | cn = split lab a b | otherwise = b maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a) maybeSplit lab = \case Just r -> do split lab (pure Nothing) (Just <$> r) Nothing -> do pure Nothing zeroExpr :: C.CExpression C.NodeInfo zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode) reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr reduceCExprOrZero expr ctx = do case reduceCExpr expr ctx of Just ex -> do r <- ex if r == zeroExpr then pure r else split ("replace by zero", C.posOf expr) (pure zeroExpr) (pure r) Nothing -> do pure zeroExpr {-# INLINE reduceCExprOrZero #-} data CType = CTInt | CTStruct | CTPointer | CTFun ![Maybe CType] | CTAny deriving (Show, Eq) reduceCExpr :: forall m. (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> Maybe (m C.CExpr) reduceCExpr expr ctx = case expr of C.CBinary o elhs erhs ni -> do if o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp] then do -- in this case we change type, so we need to keep the operation rl <- reduceCExpr elhs ctx rr <- reduceCExpr erhs ctx Just $ do l' <- rl r' <- rr pure $ C.CBinary o l' r' ni else do case reduceCExpr elhs ctx of Just elhs' -> case reduceCExpr erhs ctx of Just erhs' -> pure do split ("reduce to left", C.posOf elhs) elhs' do split ("reduce to right", C.posOf erhs) erhs' do l' <- elhs' r' <- erhs' pure $ C.CBinary o l' r' ni Nothing -> pure elhs' Nothing | otherwise -> fail "could not reduce left hand side" C.CAssign o elhs erhs ni -> case reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) of Just elhs' -> case reduceCExpr erhs ctx of Just erhs' -> pure do split ("reduce to left", C.posOf elhs) elhs' do split ("reduce to right", C.posOf erhs) erhs' do l' <- elhs' r' <- erhs' pure $ C.CAssign o l' r' ni Nothing -> fail "could not reduce right hand side" Nothing | otherwise -> fail "could not reduce left hand side" C.CVar i _ -> case Map.lookup i . inlineExprs $ ctx of Just mx -> case mx of IEKeep _ -> Just (pure expr) IEInline mx' | DisallowVariableInlining `isIn` ctx -> Nothing | otherwise -> Just (pure mx') IEDelete -> Nothing Nothing -> error ("Could not find " <> show i <> " at " <> show (C.posOf expr) <> "\n" <> show (inlineExprs ctx)) C.CConst x -> Just do pure $ C.CConst x C.CUnary o elhs ni -> do elhs' <- reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) Just $ split ("reduce to operant", C.posOf expr) elhs' do e <- elhs' pure $ C.CUnary o e ni C.CCall e es ni -> do let inlineExprOf i = Map.lookup i . inlineExprs $ ctx case e of (C.CVar i _) -> case inlineExprOf i of Just IEDelete -> Just $ do es' <- traverse (maybeSplit ("do without param", C.posOf e) . (`reduceCExpr` ctx)) es -- Not completely correct. case catMaybes es' of [] -> pure zeroExpr [e''] -> pure e'' es'' -> pure $ C.CComma es'' C.undefNode Just (IEKeep (CTFun args)) -> do rargs' :: [m C.CExpr] <- sequence . catMaybes . (\f -> zipWith f args es) $ \a ae' -> a <&> \tt -> let r = case reduceCExpr ae' ctx of Just re -> Just $ whenSplit (tt /= CTStruct) ("do without param", C.posOf ae') (pure zeroExpr) re Nothing | tt /= CTStruct -> Just (pure zeroExpr) | otherwise -> Nothing in r :: Maybe (m C.CExpr) Just $ do es' <- sequence rargs' pure $ C.CCall e es' ni Just (IEKeep CTAny) -> do let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx) res = map (`reduceCExpr` ctx) es case (re, catMaybes res) of (Nothing, []) -> Nothing (Nothing, [r]) -> Just r (_, _) -> Just do e' <- maybeSplit ("do without function", C.posOf e) re es' <- res & traverse (maybeSplit ("do without pram", C.posOf e)) case (e', catMaybes es') of (Nothing, []) -> pure zeroExpr (Nothing, [e'']) -> pure e'' (Nothing, es'') -> pure $ C.CComma es'' C.undefNode (Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni Just (IEKeep t) -> error ("unexpected type" <> show i <> show t) Just (IEInline x) -> error ("unexpected inline" <> show x) Nothing -> error ("could not find " <> show i) _ow -> notSupportedYet e ni -- do -- let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx) -- res = map (`reduceCExpr` ctx) es -- case (re, catMaybes res) of -- (Nothing, []) -> Nothing -- (Nothing, [r]) -> Just r -- (_, _) -> Just do -- e' <- maybeSplit ("do without function", C.posOf e) re -- es' <- res & traverse (maybeSplit ("do without pram", C.posOf e)) -- case (e', catMaybes es') of -- (Nothing, []) -> pure zeroExpr -- (Nothing, [e'']) -> pure e'' -- (Nothing, es'') -> pure $ C.CComma es'' C.undefNode -- (Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni C.CCond ec et ef ni -> do -- TODO: More fine grained reduction is possible here. Just $ do ec' <- reduceCExprOrZero ec ctx ef' <- reduceCExprOrZero ef ctx et' <- case et of Just et' -> Just <$> reduceCExprOrZero et' ctx Nothing -> pure Nothing pure $ C.CCond ec' et' ef' ni C.CCast decl e ni -> do re <- reduceCExpr e ctx Just do split ("don't cast", C.posOf ni) re do e' <- re pure (C.CCast (inlineTypeDefsCDeclaration decl ctx) e' ni) C.CIndex e1 e2 ni -> do -- TODO: Better reduction is posisble here. re1 <- reduceCExpr e1 ctx Just do e1' <- re1 e2' <- reduceCExprOrZero e2 ctx pure $ C.CIndex e1' e2' ni C.CComma items ni -> do let Just (x, rst) = List.uncons (reverse items) rx <- reduceCExpr x ctx Just do rst' <- foldr ( \e cc -> do maybeSplit ("remove expression", C.posOf e) (reduceCExpr e ctx) >>= \case Just e' -> (e' :) <$> cc Nothing -> cc ) (pure []) rst x' <- rx if List.null rst' then pure x' else pure $ C.CComma (reverse (x' : rst')) ni C.CMember e i l ni -> do re <- reduceCExpr e ctx Just do e' <- re pure (C.CMember e' i l ni) a -> don'tHandleWithPos a inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo inlineTypeDefsCDeclaration decl ctx = case decl of C.CDecl items decli ni -> C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni a -> don'tHandle a shouldDeleteFunction :: Context -> C.CFunctionDef C.NodeInfo -> Bool shouldDeleteFunction ctx (C.CFunDef spec _ _ _ _) = any (shouldDeleteDeclSpec ctx) spec shouldDeleteDeclaration :: Context -> C.CDeclaration C.NodeInfo -> Bool shouldDeleteDeclaration ctx decl = case decl of C.CDecl items decli _ -> any (shouldDeleteDeclSpec ctx) items || any shouldDeleteDeclItem decli a -> don'tHandle a where shouldDeleteDeclItem = \case C.CDeclarationItem a _ _ -> shouldDeleteDeclartor a a -> don'tHandle a shouldDeleteDeclartor = \case C.CDeclr _ def _ _ _ -> any shouldDeleteDerivedDeclartor def shouldDeleteDerivedDeclartor = \case C.CFunDeclr (C.CFunParamsNew x _) _ _ -> any (shouldDeleteDeclaration ctx) x C.CArrDeclr{} -> False C.CPtrDeclr _ _ -> False a -> don'tHandle a shouldDeleteDeclSpec :: Context -> C.CDeclarationSpecifier C.NodeInfo -> Bool shouldDeleteDeclSpec ctx = \case C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _) -> case Map.lookup idx . structs $ ctx of Just ISDelete -> True Just ISKeep -> False Nothing -> error ("could not find struct:" <> show idx) C.CTypeSpec (C.CSUType (C.CStruct _ _ (Just c) _ _) _) -> any (shouldDeleteDeclaration ctx) c _ow -> False inlineTypeDefsSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Context -> [C.CDeclarationSpecifier C.NodeInfo] inlineTypeDefsSpecs r ctx = r & concatMap \case a@(C.CTypeSpec (C.CTypeDef idx _)) -> do case Map.lookup idx . typeDefs $ ctx of Just (_, ITKeep) -> [a] Just (_, ITInline res) -> res Nothing -> error ("could not find typedef:" <> show idx) -- a@(C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _)) -> -- case Map.lookup idx . structs $ ctx of -- Just (Just def) -> [C.CTypeSpec (C.CSUType def C.undefNode)] -- Just Nothing -> [a] -- Nothing -> error ("could not find struct:" <> show idx) C.CTypeSpec (C.CSUType (C.CStruct a b (Just c) d e) f) -> [C.CTypeSpec (C.CSUType (C.CStruct a b (Just $ map (`inlineTypeDefsCDeclaration` ctx) c) d e) f)] a -> [a] {-# NOINLINE inlineTypeDefsSpecs #-} inlineTypeDefsCDeclarator :: C.CDeclarator C.NodeInfo -> Context -> C.CDeclarator C.NodeInfo inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx = C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo inlineTypeDefsX ctx = \case C.CFunDeclr (C.CFunParamsNew x y) b c -> C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c C.CArrDeclr a b c -> C.CArrDeclr a b c C.CPtrDeclr a b -> C.CPtrDeclr a b a -> don'tHandle a inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo inlineTypeDefsCDI di ctx = case di of C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni a -> don'tHandle a identifiers :: forall a. (Data a) => a -> [C.Ident] identifiers d = appEndo (go d) [] where go :: forall a'. (Data a') => a' -> Endo [C.Ident] go d' = case cast d' of Just l -> Endo (l :) Nothing -> gmapQl (<>) mempty go d' functionName :: C.CFunctionDef C.NodeInfo -> Maybe C.Ident functionName = \case C.CFunDef _ (C.CDeclr ix _ _ _ _) _ _ _ -> ix notSupportedYet :: (HasCallStack, Show a) => a -> C.NodeInfo -> b notSupportedYet a ni = error (show a <> " at " <> show (C.posOf ni)) noinfo :: (Functor f) => f C.NodeInfo -> f () noinfo a = a $> () don'tHandle :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> b don'tHandle f = error (show (f $> ())) don'tHandleWithPos :: (HasCallStack, Functor f, Show (f ()), C.Pos (f C.NodeInfo)) => f C.NodeInfo -> b don'tHandleWithPos f = error (show (f $> ()) <> " at " <> show (C.posOf f)) don'tHandleWithNodeInfo :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> C.NodeInfo -> b don'tHandleWithNodeInfo f ni = error (show (f $> ()) <> " at " <> show (C.posOf ni))