# -*- coding: utf-8 -*- """ Updated Aug 7 2024 @author: Qianliang Li (glia@dtu.dk) This is the main Python file containing the code that support the findings of https://doi.org/10.1101/2024.05.06.592342 The data used in this analysis was previously described and preprocessed by Zimmermann, M., Lomoriello, A. S., and Konvalinka, I. Intra-individual behavioural and neural signatures of audience effects and interactions in a mirror-game paradigm. Royal Society Open Science, 9(2) 2022 """ # %% Load libraries import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import mne import pickle import mat73 import time import seaborn as sns import nolds from tqdm import tqdm # progress bar # import Python script for microstates [von Wegner & Lauf, 2018] # originally downloaded from https://github.com/Frederic-vW/eeg_microstates # I modified the script for estimating two-brain microstates # by defining kmeans_return_all and kmeans_dualmicro from eeg_microstates3 import (kmeans_return_all, kmeans_dualmicro) # import helper functions from helper import (numpy_arr_to_pandas_df, time_now) from dualmicro_functions import (load_epoch_from_fieldtrip, prepare_1P_micro_arr, plot_microstates, reorder_microstate_results, single_micro_fit_all_feature_computation, interbrain_microstate_feature_computation, prepare_2P_micro_arr_collapsed_events, plot_dualmicro, sign_swap_microstates, dualmicro_fit_all_feature_computation, load_microstate_arrays, get_synch_events_from_pseudo_pairs, combine_two_person_microstate_arrays, pseudo_pair_dualmicro_backfitting, dualmicro_fit_all_pseudo_pair_feature_computation, compute_dualmicro_DFA, compute_dualmicro_DFA_pseudo, shifted_interbrain_microstate_feature_computation) # Style for matplotlib/seaborn plt.style.use('default') # Root for project os.chdir("C:/Users/glia/Documents/MirrorGame") # Paths data_path = "./data/external/EEG/" mov_data_path = "./data/external/movement/" fig_save_path = "./reports/figures/" feat_save_path = "./data/features/" microstate_save_path = "./data/features/microstates2/" mov_save_path = "./data/features/movement/" # %% Load preprocessed EEG data # The data was originally preprocessed in Fieldtrip by Marius Zimmermann # Get filenames for the EEG data files = [] for r, d, f in os.walk(data_path): for file in f: if (".mat" in file) & ("ppn" in file): files.append(os.path.join(r, file)) # Sort the filenames files.sort() n_subjects = len(files) # Get Subject_id Subject_id = [0]*n_subjects for i in range(n_subjects): id_number = files[i].split("/")[-1].split(".")[0].split("pair")[-1].split("pair")[-1].replace("_ppn","") Subject_id[i] = int(id_number)+1000 # add 1000 to keep the first 0 # There are data from 23 pairs # Pair 21 and 25 were excluded in the original analysis # After looking at the data, it seems pair 21, participant 1 and pair 25 # participant 2 only had 1254 and 1440 epochs respectively. # Their data also do not end with resting-state condition # All the other EEG data have around 2400 1s epochs and start and ends with rest bad_subjects = [1211, 1212, 1251, 1252] # the whole pair is dropped good_subject_idx = [not i in bad_subjects for i in Subject_id] # Update Subject_id and files Subject_id = list(np.array(Subject_id)[good_subject_idx]) n_subjects = len(Subject_id) files = list(np.array(files)[good_subject_idx]) Pair_id = [0]*(n_subjects//2) for i in range(n_subjects//2): Pair_id[i] = int(str(Subject_id[2*i])[1:-1]) # Add 100 to pair_id to fix sorting for 1 digit numbers, e.g. 03 Pair_id = [ele+100 for ele in Pair_id] n_pairs = len(Pair_id) # Save the IDs as environmental variables to be used in functions # from dualmicro_functions.py os.environ["Subject_id"] = Subject_id os.environ["Pair_id"] = Pair_id event_id = {"rest":1, "uncoupled":2, "coupled": 3, "observe, actor": 4, "observe, observer": 6, "imitate, leader": 5, "imitate, follower": 7, "control": 8} # Clarification of the labels # Cond4: ppn1 is observer, ppn2 is actor # Cond6: ppn1 is actor, ppn2 is observer # Cond5: ppn1 is follower, ppn2 is leader # Cond5: ppn1 is leader, ppn2 is follower event_id_inv = {v: k for k, v in event_id.items()} # We collapsed condition 4 and 6 & 5 and 7 for two-brain microstates # By swapping the EEG of ppn1 and ppn2 so ppn1 is always observer/follower and # ppn2 actor/leader collapsed_event_id = {"rest":1, "uncoupled":2, "coupled": 3, "observer_actor": 4, "follower_leader": 5, "control": 8} collapsed_event_id_inv = {v: k for k, v in collapsed_event_id.items()} # Load the first EEG to get info about sfreq and n_channels i = 0 epoch, trialinfo = load_epoch_from_fieldtrip(0, files, event_id) n_channels = epoch.info["nchan"] sfreq = int(epoch.info["sfreq"]) # Visualize the data # epoch.plot(scalings=40e-6, n_channels=32) # mne.viz.plot_events(epoch.events, sfreq = 1, event_id = event_id, first_samp=-3) # sfreq set to epoch length in s to reflect experiment time # We compute microstates for the three frequency ranges alpha_range = [8.0, 13.0] beta_range = [13.0, 30.0] broadband_range = None # Data is already 1 to 40 Hz broadband filtered freq_names = ["alpha","beta","broadband"] all_freq_ranges = [alpha_range, beta_range, broadband_range] # %% Intrabrain microstates fit all data # All subjects from all pairs are concatenated to find common microstates single_brain_event_id = {"rest":1, "uncoupled":2, "coupled": 3, "observer": 4, "actor": 6, "follower": 5, "leader": 7, "control": 8} ppn2_correction = {6:4, 4:6, 7:5, 5:7} # Loop over frequencies for f in len(all_freq_ranges): ff = freq_names[f] freq_range0 = all_freq_ranges[f] # ========================================================================= # First the microstate topographies are determined # It might be an advantage to run the estimation of microstates on a HPC # ========================================================================= # Get data from all pairs before performing kmeans np.random.seed(1234) n_clusters=[3, 4, 5, 6, 7, 8, 9, 10] n_runs = 100 # increased to 100 runs! # Get current time c_time1 = time_now(); print(c_time1) # Save RAM by appending directly to array instead of making list and then array sub_arr_indices = [0] trialinfo_list = [] for i in range(n_subjects): tmp_data, trialinfo = prepare_1P_micro_arr(i, ppn2_correction, sfreq, freq_range=freq_range0, standardize=True) sub_arr_indices.append(len(tmp_data)) trialinfo_list.append([Subject_id[i],trialinfo]) if i == 0: # first run initiation micro_data_all = tmp_data else: micro_data_all = np.append(micro_data_all, tmp_data, axis=0) del tmp_data # clear up space print(f"Finished preparing microstate data for pair {Subject_id[i]}") # Use cumulative sum to determine indices for each subjects's data subject_indices = np.cumsum(sub_arr_indices) # Save the trialinfos from all subjects, for easier access in later steps with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "wb") as filehandle: pickle.dump(trialinfo_list, filehandle) # # with args parser in hpc # n_maps = n_clusters[(args.map_idx-1)] # print(f"Running analysis for maps: {n_maps}") # print("Memory used by the micro data array (GB):",micro_data_all.nbytes*9.31e-10) # Run Kmeans for n_maps in n_clusters: # Don't use for loop on the HPC! # Run the 100 runs in batches of 10 to save underway in case the job script terminates best_cv_crit = 9999 # initialize unreasonably high value for r in range(10): microstate_results = list(kmeans_return_all(micro_data_all, n_maps, n_runs=int(n_runs/10),maxiter=1000)) # Overwrite the maps if a lower CV criterion was found for the initiation if microstate_results[4] < best_cv_crit: microstate_results.append(subject_indices) # Save results with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle: pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, Subject_id] print(f"Updated the microstates. Previous best CV: {best_cv_crit}", f"new best CV criterion : {microstate_results[4]}") # Update best cv criterion value best_cv_crit = microstate_results[4] print(f"Finished sub-run {r+1} out of 10") print(f"Finished microstate analysis for n_maps = {n_maps}") print("Started", c_time1, "\nCurrent",time_now()) # ========================================================================= # Evaluate microstates fitted to all data # ========================================================================= # Get summary results microstate_summary_results = [] for n_maps in n_clusters: with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Also save summary results across n_maps microstate_summary_results.append([microstate_results[0],microstate_results[3],microstate_results[4]]) # Use CV criterion to estimate best number of microstates cv_gev_arr = np.zeros((len(n_clusters),2)) for imap in range(len(n_clusters)): gev = np.sum(microstate_summary_results[imap][1]) cv = microstate_summary_results[imap][2] cv_gev_arr[imap,:] = [cv, gev] # Convert to Pandas dataframe col_names = ["n_Microstates", "Fit_Criteria", "Value"] Fit_Criteria = ["CV Criterion", "Global Explained Variance"] dtypes = [int,str,"float64"] cv_gev_df = numpy_arr_to_pandas_df(cv_gev_arr, col_names = col_names, col_values = [n_clusters,Fit_Criteria], dtypes = dtypes) # Evaluate optimal n_Microstates h_order = Fit_Criteria g = sns.FacetGrid(data=cv_gev_df,row=None, margin_titles=True, height=8, aspect=1.2) g = g.map(sns.pointplot,"n_Microstates", "Value", "Fit_Criteria", dodge=0, capsize=0.18, errorbar=None, linestyles=["-", "-"], markers=["o", "o"], hue_order=h_order, palette=sns.color_palette()) g.add_legend() plt.subplots_adjust(top=0.9, right=0.85, left=0.1) g.fig.suptitle("Mean CV Criterion and GEV", fontsize=18) g.set_axis_labels(x_var="Number of Microstates", y_var="GEV and CV", fontsize=14) # The lower CV the better. Measure of residual variance # But the higher GEV the better. # Save file g.savefig(f"{fig_save_path}Microstates/Fit_all_{ff}/"+"Single_micro_fit_all_{ff}_CV_Criterion_GEV"+".png") # Count which number of microstates have the lowest cv criterion for each subject min_idx = np.argmin(cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion","Value"]) cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion"].iloc[min_idx] # Visualize all microstates prior to re-ordering for ii in range(len(n_clusters)): plot_microstates(n_clusters[ii], microstate_summary_results[ii][0], microstate_summary_results[ii][1], epoch.info) # ========================================================================= # # Re-order intrabrain microstates # ========================================================================= # This is only run once, after microstates are created # The optimal number of microstates were 5, with 56% GEV n_maps = 5 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results plot_microstates(n_maps, maps, gev) # Make dictionary with n_maps and new order manual_reordering_template = {"5_alpha":[4,1,3,2,0], "5_beta":[3,2,1,4,0], "5_broadband":[3,2,4,1,0]} new_order = manual_reordering_template[f"{n_maps}_{ff}"] # Re-order the microstates maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Plot again to check it worked plot_microstates(n_maps, maps, gev, epoch.info) # Since neuronal activity is often oscillating, this causes polarity inversions # Microstates ignores the sign, and hence the polarity in the map is arbitrary # It is only the relative difference within the plot that is interesting # depending on initiation. We can thus freely change the sign for visualization # For two-person microstates, each person's map is sign-changed separately manual_sign_correction = {"5_alpha":[1,-1,1,1,1], "5_beta":[1,1,1,-1,-1], "5_broadband":[-1,1,-1,1,1]} sign_swap = manual_sign_correction[f"{n_maps}_{ff}"] for m in range(n_maps): maps[m] *= sign_swap[m] # Plot a final time for last confirmation plot_microstates(n_maps, maps, gev, epoch.info) # Close all figures plt.close("all") ### Save reordered results n_maps = 5 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv, sub_indices = microstate_results # Re-order new_order = manual_reordering_template[str(n_maps)] maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Sign swap for m in range(n_maps): maps[m] *= sign_swap[m] # Overwrite variable microstate_results = maps, m_labels, gfp_peaks, gev, cv, sub_indices # Save to new file with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle: pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, sub_idx] # Save topomaps for the microstates save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/" with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results fig = plot_microstates(n_maps, maps, gev, epoch.info) fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".png") # Save svg for Paper fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".svg") # ========================================================================= # # Estimate one-person microstate metrics/features # # There might be a small error introduced due to gaps in the time series from # # dropped segments, e.g. when calculating the transition probability as # # the time series is discontinuous due to the gaps. But with the high sampling rate # # only a very small fraction of the samples have discontinuous neighbors # ========================================================================= # The observer_actor and observer_observe conditions have been separated # So there are observer and actor conditions. # And the same for leader and follower. """ Overview of common (intrabrain) microstate features: 1. Average duration a given microstate remains stable (Dur) 2. Frequency occurrence, independent of individual duration (Occ) Average number of times a microstate becomes dominant per second 3. Ratio of total Time Covered (TCo) 4. Transition probabilities (TMx) 5. Ratio of shannon entropy relative to theoretical max chaos (Ent) """ # Hard-coded the optimal number of microstates based on CV criterion and GEV for dualmicro n_maps = 5 # Load all microstate results with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file: trialinfo_list = pickle.load(file) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] m_labels = [0]*n_subjects events = [0]*n_subjects m_feats = [0]*n_subjects for i in range(n_subjects): m_labels[i], events[i], m_feats[i] = single_micro_fit_all_feature_computation(i, n_maps, microstate_results, trialinfo_list, sfreq, event_id, single_brain_event_id) print(f"Finished computing microstate features for Subject {Subject_id[i]}") # Save the raw microstate features with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file: # m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] ### Convert all features to dataframes for further processing col_names = ["Subject_ID", "Event_ID", "Microstate", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys()),Microstate_names] dtypes = ["int64",str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*n_maps) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_subjects,len(single_brain_event_id),n_maps*n_maps)) # Flatten the maps to 1D col_names = ["Subject_ID", "Event_ID", "Transition", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Subject_ID", "Event_ID", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys())] dtypes = ["int64",str,"float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_entropy_df.pkl")) # ========================================================================= # We also did it for 8 alpha microstates to use the same number as # the two-brain microstates # ========================================================================= # This is only run once, after microstates are created ff = "alpha" n_maps = 8 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results plot_microstates(n_maps, maps, gev) # Make dictionary with n_maps and new order manual_reordering_template = {"8":[6,0,5,1,7,2,3,4]} new_order = manual_reordering_template[str(n_maps)] # Re-order the microstates maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Plot again to check it worked plot_microstates(n_maps, maps, gev, epoch.info) # Since neuronal activity is often oscillating, this causes polarity inversions # Microstates ignores the sign, and hence the polarity in the map is arbitrary # It is only the relative difference within the plot that is interesting # depending on initiation. We can thus freely change the sign for visualization # For two-person microstates, each person's map is sign-changed separately manual_sign_correction = {"8":[-1,1,-1,1,1,1,-1,-1]} sign_swap = manual_sign_correction[str(n_maps)] for m in range(n_maps): maps[m] *= sign_swap[m] # Plot a final time for last confirmation plot_microstates(n_maps, maps, gev, epoch.info) # Close all figures plt.close("all") ### Save reordered results n_maps = 8 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv, sub_indices = microstate_results # Re-order new_order = manual_reordering_template[str(n_maps)] maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Sign swap for m in range(n_maps): maps[m] *= sign_swap[m] # Overwrite variable microstate_results = maps, m_labels, gfp_peaks, gev, cv, sub_indices # Save to new file with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle: pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, sub_idx] # Save topomaps for the microstates save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/" with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results fig = plot_microstates(n_maps, maps, gev, epoch.info) fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".png") # Save svg for Paper fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".svg") # ========================================================================= # # Estimate one-person microstate metrics/features # # There might be a small error introduced due to gaps in the time series from # # dropped segments, e.g. when calculating the transition probability as # # the time series is discontinuous due to the gaps. But with the high sampling rate # # only a very small fraction of the samples have discontinuous neighbors # ========================================================================= # The observer_actor and observer_observe conditions have been separated # So there are observer and actor conditions. # And the same for leader and follower. """ Overview of common (intrabrain) microstate features: 1. Average duration a given microstate remains stable (Dur) 2. Frequency occurrence, independent of individual duration (Occ) Average number of times a microstate becomes dominant per second 3. Ratio of total Time Covered (TCo) 4. Transition probabilities (TMx) 5. Ratio of shannon entropy relative to theoretical max chaos (Ent) """ # Hard-coded the optimal number of microstates based on CV criterion and GEV for dualmicro n_maps = 8 # Load all microstate results with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file: trialinfo_list = pickle.load(file) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] m_labels = [0]*n_subjects events = [0]*n_subjects m_feats = [0]*n_subjects for i in range(n_subjects): m_labels[i], events[i], m_feats[i] = single_micro_fit_all_feature_computation(i, n_maps, microstate_results, trialinfo_list, sfreq, event_id, single_brain_event_id) print(f"Finished computing microstate features for Subject {Subject_id[i]}") # Save the raw microstate features with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file: # m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] ### Convert all features to dataframes for further processing col_names = ["Subject_ID", "Event_ID", "Microstate", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys()),Microstate_names] dtypes = ["int64",str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*n_maps) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_subjects,len(single_brain_event_id),n_maps*n_maps)) # Flatten the maps to 1D col_names = ["Subject_ID", "Event_ID", "Transition", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Subject_ID", "Event_ID", "Value"] col_values = [Subject_id,list(single_brain_event_id.keys())] dtypes = ["int64",str,"float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_entropy_df.pkl")) # %% Inter-brain microstates fit all data # Based on the microstate topographies estimated on single-brian data """ Interbrain features: 1. Average duration of common interbrain microstates (IBDur) 2. Frequency occurrence of common interbrain microstates in the pair (IBOcc) 3. Ratio of total time covered by interbrain common microstates in the pair (IBCov) 4. Transition probability towards common interbrain microstates in the pair (IBTMx) 5. Ratio of joint shannon entropy relative to theoretical max chaos (IBEnt) """ for f in len(all_freq_ranges): ff = freq_names[f] # Hard-coded the optimal number of microstates based on CV criterion and GEV n_maps = 5 # Load all microstate results with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file: trialinfo_list = pickle.load(file) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] # Insert Z as the symbol for non common microstate Microstate_names.insert(0,"Z") m_labels = [0]*(n_subjects//2) events = [0]*(n_subjects//2) m_feats = [0]*(n_subjects//2) Pair_id = [0]*(n_subjects//2) for i in range(n_subjects//2): m_labels[i], events[i], m_feats[i] = interbrain_microstate_feature_computation(i, n_maps, microstate_results, trialinfo_list, sfreq, event_id, collapsed_event_id) Pair_id[i] = int(str(Subject_id[2*i])[1:-1]) print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}") Pair_id = [ele+100 for ele in Pair_id] # Save the raw microstate features with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump([Pair_id, m_feats], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # The first row and column correspond to the non common microstate, i.e. # there is a different microstate in the pair # with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps.pkl", "rb") as file: # Pair_id, m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] n_pairs = len(Pair_id) ### Convert all features to dataframes for further processing col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names] dtypes = [int,str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*(n_maps+1)) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),(n_maps+1)*(n_maps+1))) # Flatten the maps to 1D col_names = ["Pair_ID", "Event_ID", "Transition", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Pair_ID", "Event_ID", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys())] dtypes = [int, str, "float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_joint_entropy_df.pkl")) # ========================================================================= # Repeat for 8 alpha microstates # ========================================================================= ff = "alpha" n_maps = 8 # Load all microstate results with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file: trialinfo_list = pickle.load(file) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] # Insert Z as the symbol for non common microstate Microstate_names.insert(0,"Z") m_labels = [0]*(n_subjects//2) events = [0]*(n_subjects//2) m_feats = [0]*(n_subjects//2) Pair_id = [0]*(n_subjects//2) for i in range(n_subjects//2): m_labels[i], events[i], m_feats[i] = interbrain_microstate_feature_computation(i, n_maps, microstate_results, trialinfo_list, sfreq, event_id, collapsed_event_id) Pair_id[i] = int(str(Subject_id[2*i])[1:-1]) print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}") Pair_id = [ele+100 for ele in Pair_id] # Save the raw microstate features with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump([Pair_id, m_feats], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # The first row and column correspond to the non common microstate, i.e. # there is a different microstate in the pair # with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps.pkl", "rb") as file: # Pair_id, m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] n_pairs = len(Pair_id) ### Convert all features to dataframes for further processing col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names] dtypes = [int,str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*(n_maps+1)) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),(n_maps+1)*(n_maps+1))) # Flatten the maps to 1D col_names = ["Pair_ID", "Event_ID", "Transition", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Pair_ID", "Event_ID", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys())] dtypes = [int, str, "float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_joint_entropy_df.pkl")) # %% Two-brain microstates fit all data """ The two observe and imitate conditions are collapesed Instead of having ppn1 being observer/follower in 8 trials and actor/leader in 8 trials, we will fix the topomap from "ppn1, top row" to always be observer and follower. This means for condition 6 and 7, ppn2 will be treated as ppn1 so the first topomap is still being fitted to the observer/follower! So the first microstate (top row) will always correspond to the Observer and Follower And the 2nd paired microstate (bot row) will always correspond to Actor and Leader Additionally we compute features for 8 trials and then take the average instead of all 16. This is done in order to compute it for the asymmetrical trials without flipping, as the flip itself can create artefacts. And the same process is repeated for the symmetrical conditions to be consistent,, although it shouldn't have a big impact for those trials """ # Compute two-person microstates for each pair, fitted for all data # We will concatenate the pairs along the channel axis # Loop over frequencies for f in len(all_freq_ranges): ff = freq_names[f] freq_range0 = all_freq_ranges[f] # ========================================================================= # First the microstate topographies are determined # It might be an advantage to run the estimation of microstates on a HPC # ========================================================================= # Get data from all pairs before performing kmeans np.random.seed(1234) n_clusters=[3, 4, 5, 6, 7, 8, 9, 10] n_runs = 100 # increased to 100 runs! # Get current time c_time1 = time_now(); print(c_time1) # Save RAM by appending directly to array instead of making list and then array pair_arr_indices = [0] trialinfo_list = [] events_list = [] for i in range(n_pairs): tmp_data, tmp_trialinfo, tmp_events = prepare_2P_micro_arr_collapsed_events(i, sfreq, event_id, freq_range=freq_range0, standardize=True) pair_arr_indices.append(len(tmp_data)) trialinfo_list.append(tmp_trialinfo) events_list.append(tmp_events) if i == 0: # first run initiation micro_data_all = tmp_data else: micro_data_all = np.append(micro_data_all,tmp_data, axis=0) del tmp_data # clear up space print(f"Finished preparing microstate data for pair {Pair_id[i]}") # Use cumulative sum to determine indices for each pair's data pair_indices = np.cumsum(pair_arr_indices) # Save the trialinfos and events from all pairs, for easier access in later steps with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "wb") as filehandle: pickle.dump([Pair_id,trialinfo_list,events_list], filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx] # # with args parser in hpc # n_maps = n_clusters[(args.map_idx-1)] # print(f"Running analysis for maps: {n_maps}") # print("Memory used by the micro data array (GB):",micro_data_all.nbytes*9.31e-10) for n_maps in n_clusters: # Don't use for loop on the HPC! # Run the 100 runs in batches of 10 to save underway in case the job script terminates best_cv_crit = 9999 # initialize unreasonably high value for r in range(10): microstate_results = list(kmeans_dualmicro(micro_data_all, n_maps, n_runs=int(n_runs/10),maxiter=1000)) # Overwrite the maps if a lower CV criterion was found for the initiation if microstate_results[4] < best_cv_crit: microstate_results.append(pair_indices) # Save results with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx] print(f"Updated the microstates. Previous best CV: {best_cv_crit}", f"new best CV criterion : {microstate_results[4]}") # Update best cv criterion value best_cv_crit = microstate_results[4] print(f"Finished sub-run {r+1} out of 10") print(f"Finished microstate analysis for n_maps = {n_maps}") print("Started", c_time1, "\nCurrent",time_now()) # ========================================================================= # # Evaluate microstates fitted to all data # ========================================================================= # Get summary results microstate_summary_results = [] for n_maps in n_clusters: with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Also save summary results across n_maps microstate_summary_results.append([microstate_results[0],microstate_results[3],microstate_results[4]]) # Use CV criterion to estimate best number of microstates cv_gev_arr = np.zeros((len(n_clusters),2)) for imap in range(len(n_clusters)): gev = np.sum(microstate_summary_results[imap][1]) cv = microstate_summary_results[imap][2] cv_gev_arr[imap,:] = [cv, gev] # Convert to Pandas dataframe col_names = ["n_Microstates", "Fit_Criteria", "Value"] Fit_Criteria = ["CV Criterion", "Global Explained Variance"] dtypes = [int,str,"float64"] cv_gev_df = numpy_arr_to_pandas_df(cv_gev_arr, col_names = col_names, col_values = [n_clusters,Fit_Criteria], dtypes = dtypes) # Evaluate optimal n_Microstates h_order = Fit_Criteria g = sns.FacetGrid(data=cv_gev_df,row=None, margin_titles=True, height=8, aspect=1.5) g = g.map(sns.pointplot,"n_Microstates", "Value", "Fit_Criteria", dodge=0, capsize=0.18, errorbar=None, linestyles=["-", "-"], markers=["o", "o"], hue_order=h_order, palette=sns.color_palette()) g.add_legend() plt.subplots_adjust(top=0.9, right=0.85, left=0.1) g.fig.suptitle("Mean CV Criterion and GEV", fontsize=18) g.set_axis_labels(x_var="Number of Microstates", y_var="GEV and CV", fontsize=14) # The lower CV the better. Measure of residual variance # But the higher GEV the better. # Save file g.savefig(f"{fig_save_path}Microstates/Fit_all_{ff}/"+"Dualmicro_fit_all_{ff}_CV_Criterion_GEV"+".png") # Count which number of microstates have the lowest cv criterion for each subject min_idx = np.argmin(cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion","Value"]) cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion"].iloc[min_idx] # Visualize the microstates # Prior to re-ordering for ii in range(len(n_clusters)): plot_dualmicro(n_clusters[ii], microstate_summary_results[ii][0], microstate_summary_results[ii][1], epoch.info) # ========================================================================= # # Re-order two-person microstates # # This is only run once, after microstates are created # # We only do it for 8 microstates, which was the optimal number # ========================================================================= n_maps = 8 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results plot_dualmicro(n_maps, maps, gev, epoch.info) # Make dictionary with n_maps and new order # All 4 top row consecutively, followed by 4 bot row manual_reordering_template = {"8_alpha":[5,2,7,0,1,4,6,3], "8_beta":[4,1,3,6,7,5,0,2], "8_broadband":[6,3,4,0,2,1,5,7]} new_order = manual_reordering_template[f"{n_maps}_{ff}"] maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Plot again to check it worked plot_dualmicro(n_maps, maps, gev, epoch.info) # Since neuronal activity is often oscillating, this causes polarity inversions # Microstates ignores the sign, and hence the polarity in the map is arbitrary # It is only the relative difference within the plot that is interesting # depending on initiation. We can thus freely change the sign for visualization # For two-person microstates, each person's map is sign-changed separately manual_sign_correction = {"8_alpha":[[-1,-1,-1,1,-1,1,1,1],[1,1,1,-1,-1,1,1,1]], "8_beta":[[-1,-1,-1,-1,-1,1,1,1],[-1,-1,1,-1,-1,1,1,-1]], "8_broadband":[[1,1,-1,-1,1,-1,-1,-1],[-1,1,-1,-1,1,-1,-1,-1]]} sign_swap = manual_sign_correction[f"{n_maps}_{ff}"] maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels) # Plot a final time for last confirmation plot_dualmicro(n_maps, maps, gev, epoch.info) # Close all figures and repeat by changing n_maps plt.close("all") ### Save reordered results n_maps = 8 ii = n_clusters.index(n_maps) with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results # Re-order new_order = manual_reordering_template[str(n_maps)] maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels) # Sign alignment maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels) # Overwrite variable microstate_results = maps, m_labels, gfp_peaks, gev, cv_min, pair_idx # Save to new file with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx] # Save topomaps for the microstates save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/" with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results fig = plot_dualmicro(n_maps, maps, gev, epoch.info) fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".png") # Save svg for Paper fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".svg") ### Save svg with fixed color scales across all microstates vlims = (np.min(maps), np.max(maps)) fig = plot_dualmicro(n_maps, maps, gev, vlims, epoch.info, vlims) fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".png") fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".svg") # ========================================================================= # # Estimate two-person microstate metrics/features # # There might be a small error introduced due to gaps in the time series from # # dropped segments, e.g. when calculating the transition probability as # # the time series is discontinuous due to the gaps. But with the high sampling rate # # only a very small fraction of the samples have discontinuous neighbors # ========================================================================= """ Overview of common microstate features: 1. Average duration a given microstate remains stable (Dur) 2. Frequency occurrence, independent of individual duration (Occ) Average number of times a microstate becomes dominant per second 3. Ratio of total Time Covered (TCo) 4. Transition probabilities (TMx) 5. Ratio of shannon entropy relative to theoretical max chaos (Ent) """ # Hard-coded the optimal number of microstates based on CV criterion and GEV n_maps = 8 # Load all microstate results with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file: trialinfo_list = pickle.load(file) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] m_labels = [0]*n_pairs events = [0]*n_pairs m_feats = [0]*n_pairs for i in range(n_pairs): m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_feature_computation(i) print(f"Finished computing microstate features for pair {Pair_id[i]}") # Save the raw microstate features with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_features_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file: # m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] ### Convert all features to dataframes for further processing col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names] dtypes = [int,str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*n_maps) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D col_names = ["Pair_ID", "Event_ID", "Transition", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Pair_ID", "Event_ID", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys())] dtypes = [int, str, "float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_entropy_df.pkl")) # %% Backfit two-person microstates to pseudo-pairs # The pseudo-pairs are created for all participants except the real pair. # This is fine for symmetrical tasks, e.g. rest and coupled. # But not for assymmetrical tasks like observation and leader. # We might have a leader - leader pseudo-pair. # Hence we only look at ppn1 with ppn2 from different pairs and exclude # ppn1 with ppn1 or ppn2 with ppn2 for f in len(all_freq_ranges): ff = freq_names[f] freq_range0 = all_freq_ranges[f] # ========================================================================= # It might be an advantage to run the backfitting of microstates on a HPC # ========================================================================= # To save time and prevent reloading the same EEG over and over, I divided # the prepare array function into a load and combine function # By loading all into memory, I can skip loading for every combination # but this requires a very high memory, which is fortunately not a problem on the hpc # I am limiting the pseudo-pairs to be where ppn1 ends with 1 and ppn2 with 2 # Which means we have 21 * 20 options n_pseudo_pairs = n_pairs*(n_pairs-1) # To not load data 420 times for two participants, we preload all EEG data to ram c_time1 = time_now(); print("Starting load",c_time1) all_micro_data = [0]*n_subjects all_trial_data = [0]*n_subjects for i in range(n_subjects): all_micro_data[i], all_trial_data[i] = load_microstate_arrays(i) print("Load finished", time_now()) # Get the prototypical alpha maps n_maps = 8 with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) prototype_map = microstate_results[0] # Start the backfitting m_labels = [0]*n_pseudo_pairs events = [0]*n_pseudo_pairs GEVs = [0]*n_pseudo_pairs counter = 0 pseudo_pair_id = [] for i in range(n_subjects): for j in range(n_subjects): # Skip if the subject is the same if np.abs(Subject_id[i]-Subject_id[j]) == 0: continue # Skip if the subject are from the same pair if np.abs(Subject_id[i]-Subject_id[j]) == 1: continue # Skip if ppn1 is not ending on 1, and ppn2 not ending on 2 if not (str(Subject_id[i])[-1] == "1") & (str(Subject_id[j])[-1] == "2"): continue # A valid pseudo pair else: # Get the synchronized events event0 = get_synch_events_from_pseudo_pairs(all_trial_data[i],all_trial_data[j]) # Get the preloaded micro data micro_data1 = all_micro_data[i] micro_data2 = all_micro_data[j] # Get the synchronized and concatenated micro data in alpha micro_data0 = combine_two_person_microstate_arrays(micro_data1, micro_data2, event0, sfreq, freq_range=freq_range0) # Backfit and get the labels L, GEV = pseudo_pair_dualmicro_backfitting(micro_data0, prototype_map, event0, n_maps, sfreq) # Save the results m_labels[counter], GEVs[counter], events[counter] = L, GEV, event0 pseudo_pair_id.append(f"{Subject_id[i]}-{Subject_id[j]}") # Move counter counter += 1 print(f"Finished backfitting for pseudo pair {pseudo_pair_id[-1]}") print("Started", c_time1, "\nCurrent",time_now()) backfit_results = [pseudo_pair_id, m_labels, GEVs, events] # Save the results from all pseudo pairs with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(backfit_results, filehandle) # [pseudo_pair_id, L, GEV, events] # ========================================================================= # Estimate two-person microstate metrics/features # There might be a small error introduced due to gaps in the time series from # dropped segments, e.g. when calculating the transition probability as # the time series is discontinuous due to the gaps. But with the high sampling rate # only a very small fraction of the samples have discontinuous neighbors # ========================================================================= """ Overview of common microstate features: 1. Average duration a given microstate remains stable (Dur) 2. Frequency occurrence, independent of individual duration (Occ) Average number of times a microstate becomes dominant per second 3. Ratio of total Time Covered (TCo) 4. Transition probabilities (TMx) 5. Ratio of shannon entropy relative to theoretical max chaos (Ent) """ n_maps = 8 # Load all the backfit pseudo-pair results with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events] # Hard-coded the optimal number of microstates based on CV criterion and GEV n_maps = 8 Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] pseudo_pair_id = backfit_results[0] n_pseudo_pairs = len(pseudo_pair_id) m_labels = [0]*n_pseudo_pairs events = [0]*n_pseudo_pairs m_feats = [0]*n_pseudo_pairs for i in range(n_pseudo_pairs): m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_pseudo_pair_feature_computation(i,\ n_maps, backfit_results, sfreq, event_id, collapsed_event_id) print(f"Finished computing microstate features for psuedo pair {pseudo_pair_id[i]}") # Save the raw microstate features with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_pseudo_pairs_features_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file: # m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] ### Convert all features to dataframes for further processing col_names = ["Pseudo_Pair_ID", "Event_ID", "Microstate", "Value"] col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),Microstate_names] dtypes = [str,str,str,"float64"] # Mean duration Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map] Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Duration"]*len(Dur_df) Dur_df.insert(2, "Measurement", measurement_id) # Save df Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_duration_df.pkl")) # Frequency of occurrence per sec Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map] Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Occurrence"]*len(Occ_df) Occ_df.insert(2, "Measurement", measurement_id) # Save df Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_occurrence_df.pkl")) # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_time_covered_df.pkl")) # Transition matrix should be read as probability of row to column xi, xj = np.meshgrid(Microstate_names,Microstate_names) _, arrow = np.meshgrid(Microstate_names,["->"]*n_maps) transition_info = np.char.add(np.char.add(xj,arrow),xi) TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map] TMx_arr = TMx_arr.reshape((n_pseudo_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D col_names = ["Pseudo_Pair_ID", "Event_ID", "Transition", "Value"] col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),transition_info.flatten()] TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Probability"]*len(TMx_df) TMx_df.insert(2, "Measurement", measurement_id) # Save df TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_transition_df.pkl")) # Entropy Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event] col_names = ["Pseudo_Pair_ID", "Event_ID", "Value"] col_values = [pseudo_pair_id,list(collapsed_event_id.keys())] dtypes = [str,str,"float64"] Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Entropy"]*len(Ent_df) Ent_df.insert(2, "Measurement", measurement_id) # Save df Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_entropy_df.pkl")) # %% eLORETA on Intrabrain microstates ### Make forward solutions # Computed using the fsaverage template MRI # # First time setup will need to download fsaverage templates # mne.datasets.fetch_fsaverage() fs_dir = "C:/Users/glia/mne_data/MNE-fsaverage-data/fsaverage" subjects_dir = os.path.dirname(fs_dir) trans = "fsaverage" src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif") bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif") # Read the template sourcespace sourcespace = mne.read_source_spaces(src) # Since I use a template, I only need to make the forward operator once # As we assume the channel positions are fixed approximately the same # for all subjects using the same caps subject_eeg = epoch.copy() subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling # Make forward solution fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src, bem=bem, eeg=True, mindist=5.0, n_jobs=1) # # Save forward operator # fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(study_order[i]) # mne.write_forward_solution(fname_fwd, fwd, overwrite=True) # # Check the alignment looks correct between EEG sensors and the template # mne.viz.plot_alignment( # subject_eeg.info, trans, src=src, fwd=fwd, dig=True, # meg=["helmet", "sensors"], subjects_dir=subjects_dir, surfaces="auto") ### Load Parcellation # Desikan-Killiany atlas (34 ROI from both hemispheres = 68 ROIs) # Named aparc.annot in MNE python fsaverage folder labels = mne.read_labels_from_annot("fsaverage", parc="aparc", subjects_dir=subjects_dir) labels = labels[:-1] # remove unknowns label_names = [label.name for label in labels] n_roi = len(labels) # Prepare brain lobe information Frontal_rois = ['superiorfrontal-lh','superiorfrontal-rh', 'rostralmiddlefrontal-lh','rostralmiddlefrontal-rh', 'caudalmiddlefrontal-lh','caudalmiddlefrontal-rh', 'parsopercularis-lh','parsopercularis-rh', 'parstriangularis-lh','parstriangularis-rh', 'parsorbitalis-lh','parsorbitalis-rh', 'lateralorbitofrontal-lh','lateralorbitofrontal-rh', 'medialorbitofrontal-lh','medialorbitofrontal-rh', 'precentral-lh','precentral-rh', 'paracentral-lh','paracentral-rh', 'frontalpole-lh','frontalpole-rh'] Parietal_rois = ['superiorparietal-lh','superiorparietal-rh', 'inferiorparietal-lh','inferiorparietal-rh', 'supramarginal-lh','supramarginal-rh', 'postcentral-lh','postcentral-rh', 'precuneus-lh','precuneus-rh'] Temporal_rois = ['superiortemporal-lh','superiortemporal-rh', 'middletemporal-lh','middletemporal-rh', 'inferiortemporal-lh','inferiortemporal-rh', 'bankssts-lh','bankssts-rh', 'fusiform-lh','fusiform-rh', 'transversetemporal-lh','transversetemporal-rh', 'entorhinal-lh','entorhinal-rh', 'temporalpole-lh','temporalpole-rh', 'parahippocampal-lh','parahippocampal-rh'] Occipital_rois = ['lateraloccipital-lh','lateraloccipital-rh', 'lingual-lh','lingual-rh', 'cuneus-lh','cuneus-rh', 'pericalcarine-lh','pericalcarine-rh'] Cingulate_rois = ['rostralanteriorcingulate-lh','rostralanteriorcingulate-rh', 'caudalanteriorcingulate-lh','caudalanteriorcingulate-rh', 'posteriorcingulate-lh','posteriorcingulate-rh', 'isthmuscingulate-lh','isthmuscingulate-rh'] Insular_rois = ['insula-lh','insula-rh'] Lobes = [Frontal_rois,Parietal_rois,Temporal_rois,Occipital_rois,Cingulate_rois,Insular_rois] Brain_region_labels = ["Frontal","Parietal","Temporal","Occipital","Cingulate","Insular"] Brain_region_hemi_labels = np.repeat(Brain_region_labels,2).astype("<U12") Brain_region_hemi_labels[::2] = [ele+"-lh" for ele in Brain_region_labels] Brain_region_hemi_labels[1::2] = [ele+"-rh" for ele in Brain_region_labels] Brain_region = np.array(label_names, dtype = "<U32") for l in range(len(Lobes)): Brain_region[np.array([i in Lobes[l] for i in Brain_region])] = Brain_region_labels[l] ### Concatenate the microstates into one Raw Object to apply inverse on it n_maps = 8 Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] for f in len(all_freq_ranges): ff = freq_names[f] with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Get the microstates and reshape to have channels in the first dim maps = microstate_results[0] maps = maps.transpose() raw_maps = mne.io.RawArray(maps,subject_eeg.info) raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling # Using assumption about equal variance and no correlations I make a diagonal matrix as cov noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None) # Make inverse operator # Using default depth parameter = 0.8 and free orientation (loose = 1) inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info, fwd, noise_cov, loose = 1, depth = 0.8, verbose = 0) src_inv = inverse_operator["src"] # Compute inverse solution and retrieve the source localized microstate activities for each label # Define regularization snr = 3 # Default setting # Use eLORETA and only keep the activity normal to the cortical surface stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator, lambda2 = 1/(snr**2), pick_ori = "normal", method = "eLORETA", verbose = 2) # Get the source activity in the ROIs label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip", return_generator=False, verbose=0) # Visualize the microstates in source space # This way of plotting makes the color scale fixed across microstates brain = stc.plot( hemi="lh", subjects_dir=subjects_dir, smoothing_steps=1, ) ### Convert Label Activity to Pandas DataFrame # With ROI names and then add Brain Region label col_names = ["ROI", "Microstate", "Value"] col_names = ["Microstate", "ROI", "Value"] col_val = [Microstate_names, label_names] # Create the source microstate activity dataframe sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names = col_names, col_values = col_val) assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])& (sMicro_df["Microstate"]==Microstate_names[3]), "Value"].iloc[0] == label_activity[4,3] # Add brain region information sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi))) sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\ cat.reorder_categories(Brain_region_labels, ordered=True) # Add hemisphere information sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]]) # Add a colum that combines brain region and hemisphere for plotting sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])]) sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\ cat.reorder_categories(Brain_region_hemi_labels, ordered=True) # Save the dataframe sMicro_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_{ff}_source_activity_df.pkl")) # %% eLORETA on two-brain microstates # Continued based on fwd operator and template loaded for intrabrain n_maps = 8 Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] for f in len(all_freq_ranges): ff = freq_names[f] with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Get the microstates maps = microstate_results[0] maps = maps.reshape(2*n_maps,n_channels) # # Check the maps were split properly # plot_microstates(n_maps, maps[:8], microstate_results[3]) # plot_microstates(n_maps, maps[8:], microstate_results[3]) # Maps are ordered as: ppn1 A, ppn2 A, ppn1 B, ppn2 B etc # Transpose to have channels in the first dim maps = maps.transpose() raw_maps = mne.io.RawArray(maps,subject_eeg.info) raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling # Using assumption about equal variance and no correlations I make a diagonal matrix as cov noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None) # Make inverse operator # Using default depth parameter = 0.8 and free orientation (loose = 1) inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info, fwd, noise_cov, loose = 1, depth = 0.8, verbose = 0) src_inv = inverse_operator["src"] # Compute inverse solution and retrieve the source localized microstate activities for each label # Define regularization snr = 3 # Default setting # Use eLORETA and only keep the activity normal to the cortical surface stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator, lambda2 = 1/(snr**2), pick_ori = "normal", method = "eLORETA", verbose = 2) # Get the source activity in the ROIs label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip", return_generator=False, verbose=0) # Visualize the microstates in source space # This way of plotting makes the color scale fixed across microstates brain = stc.plot( hemi="lh", subjects_dir=subjects_dir, smoothing_steps=1, ) # Visualize with different color scales for each microstate Microstate_names2 = np.repeat(Microstate_names,2).astype("<U2") Microstate_names2[::2] = [ele+"1" for ele in Microstate_names] Microstate_names2[1::2] = [ele+"2" for ele in Microstate_names] # Save source activations for each microstate # Lateral and medial for each hemisphere + dorsal + flatmaps save_path = f"{fig_save_path}Microstates/SourceDualmicroPrototypes/" hemis = ["lh","rh"] views = ["lateral","medial"] for i in range(len(Microstate_names2)): times0 = np.linspace(0,1,sfreq+1)[:2*n_maps+1] stc0 = stc.copy().crop(times0[i],times0[i+1],include_tmax=False) # Color bar limits defined as max saturation of top 1% (yellow or teal) # middle at 5%, which means they will have alpha = 1 and progressively be # closer to yellow or teal # Lower boundary at 10%, which means they will be red/blue but with decreased # transparency clim_max = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//100])[0] clim_mid = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//20])[0] clim_min = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//10])[0] clim0 = {"kind":"value","pos_lims":[clim_min,clim_mid,clim_max]} # Lateral and medial for h in range(len(hemis)): hh = hemis[h] brain = stc0.plot( hemi=hh, subjects_dir=subjects_dir, smoothing_steps=10, # spatial smoothing colorbar=False, background="white", cortex="classic", size=800, transparent=True, views=views[0], clim=clim0, ) brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[0]}"+".png")) brain.show_view(views[1]) brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[1]}"+".png")) # Dorsal map brain = stc0.plot( hemi="both", subjects_dir=subjects_dir, smoothing_steps=10, # spatial smoothing colorbar=True, background="white", cortex="classic", size=1500, transparent=True, views="dorsal", clim=clim0, ) brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_dorsal"+".png")) # Flat map brain = stc0.plot( hemi="both", surface="flat", subjects_dir=subjects_dir, smoothing_steps=10, # spatial smoothing colorbar=False, background="white", cortex="classic", size=1500, transparent=True, views="flat", clim=clim0, ) brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_flat"+".png")) # Close all figures mne.viz.close_all_3d_figures() # Mean brain = stc.mean().plot( hemi="lh", subjects_dir=subjects_dir, smoothing_steps=10, ) ### Convert Label Activity to Pandas DataFrame # With ROI names and then add Brain Region label col_names = ["ROI", "Microstate", "Value"] col_names = ["Microstate", "ROI", "Value"] col_val = [Microstate_names2, label_names] dtypes = [str, str, "float64"] # Create the source microstate activity dataframe sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names, col_val, dtypes) assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])& (sMicro_df["Microstate"]==Microstate_names2[3]), "Value"].iloc[0] == label_activity[4,3] # Add brain region information sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi))) sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\ cat.reorder_categories(Brain_region_labels, ordered=True) # Add hemisphere information sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]]) # Add a colum that combines brain region and hemisphere for plotting sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])]) sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\ cat.reorder_categories(Brain_region_hemi_labels, ordered=True) # Save the dataframe sMicro_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_{ff}_source_activity_df.pkl")) # %% LRTC with DFA on Two-person microstate label time series # Using Detrended Fluctuation Analysis (DFA) # Adapted from Python Implementation by Arthur-Ervin Avramiea <a.e.avramiea@vu.nl> # From NBT2 toolbox """ See Hardstone et al, 2012 for more info Perform DFA 1 Compute cumulative sum of time series to create signal profile 2 Define set of window sizes (see below) 3 Remove the linear trend using least-squares for each window 4 Calculate standard deviation for each window and take the mean 5 Plot fluctuation function (Standard deviation) as function for all window sizes, on double logarithmic scale 6 The DFA exponent alpha correspond to Hurst exponent f(L) = sd = L^alpha (with alpha as linear coefficient in log plot) If 0 < alpha < 0.5: The process exhibits anti-correlations If 0.5 < alpha < 1: The process exhibits positive correlations If alpha = 0.5: The process is indistinguishable from a random process If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1 Window sizes should be equally spaced on a logarithmic scale Sizes should be at least 4 samples and up to 10% of total signal length ### Specific for our microstate DFA analysis We have 8 microstates, but to compute the random walk we will partition the microstate sequence into two classes (see reference on microstate Hurst https://pubmed.ncbi.nlm.nih.gov/20921381/) A/B/C/D will be assigned the positive direction, while E/F/G/H will be assigned the negative direction, corresponding to whether ppn1 or ppn2 are in one of the canonical microstates, while the other have a non-specific (average) topography. Each 25s trial is too short to estimate LRTC on, so I will concatenate all the trials corresponding to each condition. This should yield up to 25s * 16 trials = 400s of data for each condition, except rest which is up to 120s * 2 trials = 240s DFA is computed from 8 trials and then averaged, to avoid the problem of flipping in the asymmetric trials. We change windows size to 5-20s To ensure consistency the same procedure is applied to the symmetric trials """ # Window sizes compute_interval = [5,20] # the window sizes should be between 5s and 30s # Compute DFA window sizes for the given Interval window_sizes = np.floor(np.logspace(-1,3,40) * sfreq).astype(int) # %logspace from 0.1 seccond (10^-1) to 1000 (10^3) seconds window_sizes = window_sizes[(window_sizes >= compute_interval[0]*sfreq) & \ (window_sizes <= compute_interval[1]*sfreq)] for f in len(all_freq_ranges): ff = freq_names[f] # Nolds are already using all cores so multiprocessing with concurrent makes it slower n_maps = 8 with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file: trialinfo_list = pickle.load(file) # Pre-allocate memory DFA_arr = np.zeros((n_pairs,len(collapsed_event_id))) Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes))) # Get start time c_time1 = time.localtime() c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1) print("Started {}".format(c_time1)) # Nolds are already using all cores so concurrent futures with make it slower for i in range(n_pairs): # Compute DFA dfa_temp, fluc_temp = compute_dualmicro_DFA(i, microstate_results, trialinfo_list, sfreq, window_sizes, event_id, collapsed_event_id, True) # Save to array DFA_arr[i] = dfa_temp Fluctuation_arr[i] = fluc_temp print("Finished {} out of {} pairs".format(i+1,n_pairs)) # Get ending time c_time2 = time.localtime() c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2) print(("Started {} \nEnded Time {}".format(c_time1,c_time2))) # Save the raw DFA analysis data np.save(microstate_save_path+"DFA_arr.npy", DFA_arr) np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr) # Convert to Pandas dataframe (DFA exponent) col_names = ["Pair_ID", "Event_ID", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys())] dtypes = ["int64",str,"float64"] DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["DFA"]*len(DFA_df) DFA_df.insert(2, "Measurement", measurement_id) # Save df DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl")) # %% DFA in pseudo-pairs for f in len(all_freq_ranges): ff = freq_names[f] # Nolds are already using all cores so multiprocessing with concurrent makes it slower n_maps = 8 # Load all the backfit pseudo-pair results with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file: backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events] # Pre-allocate memory DFA_arr = np.zeros((n_pairs,len(collapsed_event_id))) Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes))) # Get start time c_time1 = time.localtime() c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1) print("Started {}".format(c_time1)) # Nolds are already using all cores so concurrent futures with make it slower for i in range(n_pairs): # Compute DFA dfa_temp, fluc_temp = compute_dualmicro_DFA_pseudo(i, backfit_results, sfreq, window_sizes, event_id, collapsed_event_id, True) # Save to array DFA_arr[i] = dfa_temp Fluctuation_arr[i] = fluc_temp print("Finished {} out of {} pairs".format(i+1,n_pairs)) # Get ending time c_time2 = time.localtime() c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2) print(("Started {} \nEnded Time {}".format(c_time1,c_time2))) # Save the raw DFA analysis data np.save(microstate_save_path+"DFA_arr.npy", DFA_arr) np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr) # Convert to Pandas dataframe (DFA exponent) col_names = ["Pair_ID", "Event_ID", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys())] dtypes = ["int64",str,"float64"] DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["DFA"]*len(DFA_df) DFA_df.insert(2, "Measurement", measurement_id) # Save df DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl")) # %% Time-lagged inter-brain microstate synchrony # Hard-coded the optimal number of microstates based on CV criterion and GEV n_maps = 5 # The lag (number of samples) we will iterate over to find greatest time-lagged interbrain microstate synchrony lag_search_range = sfreq # 1 second in both directions lag_interval = np.linspace(-lag_search_range,lag_search_range,lag_search_range*2+1).astype(int) Microstate_names = [chr(ele) for ele in range(65,65+n_maps)] # Insert Z as the symbol for non common microstate Microstate_names.insert(0,"Z") # Loop over frequencies for f in len(all_freq_ranges): ff = freq_names[f] # Load all microstate results with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file: microstate_results = pickle.load(file) # Load all trialinfos with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file: trialinfo_list = pickle.load(file) m_labels = [0]*(n_subjects//2) events = [0]*(n_subjects//2) m_feats = [0]*(n_subjects//2) shift_info = [0]*(n_subjects//2) Pair_id = [0]*(n_subjects//2) for i in tqdm(range(n_subjects//2)): m_labels[i], events[i], m_feats[i], shift_info[i] = shifted_interbrain_microstate_feature_computation(i, n_maps, microstate_results, trialinfo_list, sfreq, event_id, collapsed_event_id, lag_search_range, lag_interval) Pair_id[i] = int(str(Subject_id[2*i])[1:-1]) print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}") Pair_id = [ele+100 for ele in Pair_id] # Save the raw microstate features with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle: pickle.dump([Pair_id, m_feats, shift_info], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr][Event, map*] # * the feature is calculated for each map, where applicable. # Transition matrix is calculated for each map -> map transition probability # The first row and column correspond to the non common microstate, i.e. # there is a different microstate in the pair # with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file: # Pair_id, m_feats, shift_info = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*] n_pairs = len(Pair_id) ### Convert all features to dataframes for further processing col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"] col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names] dtypes = [int,str,str,"float64"] # Ratio total Time Covered TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map] TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes) # Add dummy variable to enabling combining of dataframes measurement_id = ["Time_covered"]*len(TCo_df) TCo_df.insert(2, "Measurement", measurement_id) # Save df TCo_df.to_pickle(os.path.join(microstate_save_path,f"Shifted_IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))