# Fully Convolutional Siamese Networks for Change Detection --- This repo has been deprecated. Please see [CDLab](https://github.com/Bobholamovic/CDLab), which includes more architectures and datasets. --- This is an unofficial implementation of the paper > Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. (2018, October). Fully convolutional siamese networks for change detection. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4063-4067). IEEE. ~~as the [official repo](https://github.com/rcdaudt/fully_convolutional_change_detection) does not provide the training code.~~ [paper link](https://ieeexplore.ieee.org/abstract/document/8451652) # Dependencies > opencv-python==4.1.1 pytorch==1.3.1 torchvision==0.4.2 pyyaml==5.1.2 scikit-image==0.15.0 scikit-learn==0.21.3 scipy==1.3.1 tqdm==4.35.0 Tested using Python 3.7.4 on Ubuntu 16.04 and Python 3.6.8 on Windows 10. # Basic usage ```bash # The network definition scripts are from the original repo git clone --recurse-submodules git@github.com:Bobholamovic/FCN-CD-PyTorch.git cd FCN-CD-PyTorch mkdir exp cd src ``` In `src/constants.py`, change the dataset locations to your own. In `config_base.yaml`, set specific configurations. For training, try ```bash python train.py train --exp_config ../configs/config_base.yaml ``` For evaluation, try ```bash python train.py eval --exp_config ../configs/config_base.yaml --resume path_to_checkpoint --save-on ``` You can check the model weight files in `exp/base/weights/`, the log files in `exp/base/logs`, and the output change maps in `exp/base/out`. --- # Changed - 2020.3.14 Add configuration files. - 2020.4.14 Detail README.md. - 2020.12.8 Update framework.