diff --git a/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py b/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py index be9ffc0a8bf87fa09c3eac92b7d9020c96a6ec06..8add40600097e21ccfbdb4064e516525ea591bb1 100644 --- a/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py +++ b/configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py @@ -27,7 +27,7 @@ optimizer = dict( weight_decay=0.001) lr_config = dict( _delete_=True, - policy='CosineAnealing', + policy='CosineAnnealing', warmup='linear', warmup_iters=1000, warmup_ratio=1.0 / 10, diff --git a/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py b/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py index 31b1fe72cd8e41e35521d75ad24e3d4e433019fc..c7cc6001cf41ece64824a20a64b7b802617fee1a 100644 --- a/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py +++ b/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py @@ -228,7 +228,7 @@ optimizer = dict(type='AdamW', lr=0.003, betas=(0.95, 0.99), weight_decay=0.01) # max_norm=10 is better for SECOND optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) lr_config = dict( - policy='CosineAnealing', + policy='CosineAnnealing', warmup='linear', warmup_iters=1000, warmup_ratio=1.0 / 10, diff --git a/docs/config.md b/docs/config.md index d4c5cb00cd31283ba9cdb166933f1bd555c17336..b83b4f8db429f8142526931b44e012566e46bbb8 100644 --- a/docs/config.md +++ b/docs/config.md @@ -324,7 +324,7 @@ optimizer_config = dict( # Config used to build the optimizer hook, refer to ht max_norm=10, # max norm of the gradients norm_type=2)) # Type of the used p-norm. Can be 'inf' for infinity norm. lr_config = dict( # Learning rate scheduler config used to register LrUpdater hook - policy='step', # The policy of scheduler, also support CosineAnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9. + policy='step', # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9. warmup=None, # The warmup policy, also support `exp` and `constant`. step=[24, 32]) # Steps to decay the learning rate checkpoint_config = dict( # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.