# Do this in a separate file to see the generated help: #library(devtools) #document() #load_all(as.package("../../onlineforecast")) #?rls_optim #' Optimize parameters (transformation stage) of RLS model #' #' This is a wrapper for \code{\link{optim}} to enable easy use of bounds and caching in the optimization. #' #' @title Optimize parameters for onlineforecast model fitted with RLS #' @param model The onlineforecast model, including inputs, output, kseq, p #' @param data The data.list including the variables used in the model. #' @param scorefun The function to be score used for calculating the score to be optimized. #' @param cachedir A character specifying the path (and prefix) of the cache file name. If set to \code{""}, then no cache will be loaded or written. #' @param printout A logical determining if the score function is printed out in each iteration of the optimization. #' @param method The method argument for \code{\link{optim}}. #' @param ... Additional parameters to \code{\link{optim}} #' @return Result object of optim(). #' Parameters resulting from the optimization can be found from \code{result$par} #' @seealso \code{link{optim}} for how to control the optimization. #' @examples #' #' # Take data (See vignette ??(ref) for better model and more details) #' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01")) #' D$y <- D$heatload #' # Define a model #' model <- forecastmodel$new() #' model$add_inputs(Ta = "Ta", mu = "ones()") #' model$add_regprm("rls_prm(lambda=0.99)") #' #' # Before fitting the model, define which points to include in the evaluation of the score function #' D$scoreperiod <- in_range("2010-12-20", D$t) #' # And the sequence of horizons to fit for #' model$kseq <- 1:6 #' # Now we can fit the model and get the score, as it is #' rls_fit(model=model, data=D, scorefun=rmse, returnanalysis=FALSE) #' # Or we can change the lambda #' rls_fit(c(lambda=0.9), model, D, rmse, returnanalysis=FALSE) #' #' # This could be passed to optim() (or any optimizer, see forecastmodel$insert_prm()). #' optim(c(lambda=0.98), rls_fit, model=model, data=D, scorefun=rmse, returnanalysis=FALSE, #' lower=c(lambda=0.9), upper=c(lambda=0.999), method="L-BFGS-B") #' #' # rls_optim is simply a helper, it's makes using bounds easiere and enables caching of the results #' # First add bounds for lambda (lower, init, upper) #' model$add_prmbounds(lambda = c(0.9, 0.98, 0.999)) #' #' # Now the same optimization as above can be done by #' val <- rls_optim(model, D) #' val #' #' # Caching can be done by providing a path (try rerunning and see the file in "cache" folder) #' val <- rls_optim(model, D, cachedir="cache") #' val #' #' # If anything affecting the results are changed, then the cache is not loaded #' model$add_prmbounds(lambda = c(0.89, 0.98, 0.999)) #' val <- rls_optim(model, D, cachedir="cache") #' #' # To delete the cache #' file.remove(dir("cache", full.names=TRUE)) #' file.remove("cache") #' #' @export rls_optim <- function(model, data, scorefun = rmse, cachedir="", printout=TRUE, method="L-BFGS-B", ...){ # Take the parameters bounds from the parameter bounds set in the model init <- model$get_prmbounds("init") lower <- model$get_prmbounds("lower") upper <- model$get_prmbounds("upper") # If bounds are NA, then set if(any(is.na(lower))){ lower[is.na(lower)] <- -Inf} if(any(is.na(upper))){ lower[is.na(upper)] <- Inf} # Caching the results based on some of the function arguments if(cachedir != ""){ # Have to insert the parameters in the expressions to get the right state of the model for unique checksum model$insert_prm(init) # Give all the elements needed to calculate the unique cache name # This is maybe smarter, don't have to calculate the transformation of the data: cnm <- cache_name(model$regprm, getse(model$inputs, nms="expr"), model$output, model$prmbounds, model$kseq, data, objfun, init, lower, upper, cachedir = cachedir) # Have to reset the state first to remove dependency of previous calls model$reset_state() cnm <- cache_name(rls_fit, rls_optim, model$outputrange, model$regprm, model$transform_data(data), data[[model$output]], scorefun, init, lower, upper, cachedir = cachedir) # Maybe load the cached result if(file.exists(cnm)){ return(readRDS(cnm)) } } # Run the optimization res <- optim(par = init, fn = rls_fit, # Parameters to pass to rls_fit model = model, data = data, scorefun = scorefun, printout = printout, returnanalysis = FALSE, # Parameters to pass to optim lower = lower, upper = upper, method = method, ...) # Save the result in the cachedir if(cachedir != ""){ cache_save(res, cnm) } # Return the result return(res) }