# Do this in a separate file to see the generated help: #library(devtools) #document() #load_all(as.package("../../onlineforecast")) #?rls_fit #' This function fits the onlineforecast model to the data and returns either: model validation data or just the score value. #' #' #' This function has three main purposes (in the examples these three are demonstrated in the examples): #' #' - Returning model validation data, such as residuals and recursive estimated parameters. #' #' - For optimizing the parameters using an R optimizer function. The parameters to optimize for is given in \code{prm} #' #' - Fitting a model to data and saving the final state in the model object (such that from that point the model can be updated recursively as new data is received). #' #' Note, if the \code{scorefun} is given the \code{data$scoreperiod} must be set to (int or logical) define which points to be evaluated in the scorefun. #' #' @title Fit an onlineforecast model with Recursive Least Squares (RLS). #' @param prm vector with the parameters for fitting. Deliberately as the first element to be able to use \code{\link{optim}} or other optimizer. If NA then the model will be fitted with the current values in the input expressions, see examples. #' @param model as an object of class forecastmodel: The model to be fitted. #' @param data as a data.list with the data to fit the model on. #' @param scorefun as a function (optional), default is \code{\link{rmse}}. If the score function is given it will be applied to the residuals of each horizon (only data$scoreperiod is included). #' @param returnanalysis as a logical. If FALSE then the sum of the scoreval on all horizons are returned, if TRUE a list with values for analysis. #' @param runcpp logical: If true the c++ implementation of RLS is run, if false the R implementation is run (slower). #' @param printout logical: If TRUE the offline parameters and the score function value are printed. #' @return Depends on: #' #' - If \code{returnanalysis} is TRUE a list containing: #' #' * \code{Yhat}: data.frame with forecasts for \code{model$kseq} horizons. #' #' * \code{model}: The forecastmodel object cloned deep, so can be modified without changing the original object. #' #' * \code{data}: data.list with the data used, see examples on how to obtain the transformed data. #' #' * \code{Lfitval}: list with RLS coefficients in a data.frame for each horizon, use \code{\link{plot_ts.rls_fit}} to plot them and to obtain them as a data.frame for each coefficient. #' #' * \code{scoreval}: data.frame with the scorefun result on each horizon (only scoreperiod is included). #' #' - If \code{returnanalysis} is FALSE (and \code{scorefun} is given): The sum of the score function on all horizons (specified with model$kseq). #' #' @seealso #' For optimizing parameters \code{\link{rls_optim}()}, for summary \code{summary.rls_fit}, for plotting \code{\link{plot_ts.rls_fit}()}, and the other functions starting with 'rls_'. #' #' @examples #' #' #' # Take data #' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01")) #' D$y <- D$heatload #' # Define a simple model #' model <- forecastmodel$new() #' model$output <- "y" #' model$add_inputs(Ta = "Ta", #' mu = "one()") #' model$add_regprm("rls_prm(lambda=0.99)") #' #' # Before fitting the model, define which points to include in the evaluation of the score function #' D$scoreperiod <- in_range("2010-12-20", D$t) #' # And the sequence of horizons to fit for #' model$kseq <- 1:6 #' #' # Now we can fit the model with RLS and get the model validation analysis data #' fit <- rls_fit(model = model, data = D) #' # What did we get back? #' names(fit) #' # The one-step forecast #' plot(D$y, type="l") #' lines(fit$Yhat$k1, col=2) #' # The one-step RLS coefficients over time (Lfitval is a list of the fits for each horizon) #' plot(fit$Lfitval$k1$Ta, type="l") #' #' # A summary #' summary(fit) #' # Plot the fit #' plot_ts(fit, kseq=1) #' #' # Fitting with lower lambda makes the RLS coefficients change faster #' fit2 <- rls_fit(prm = c(lambda=0.9), model, D) #' plot_ts(fit2, kseq=1) #' #' #' # It can return a score #' rls_fit(c(lambda=0.9), model, D, scorefun=rmse, returnanalysis=FALSE) #' #' # Such that it can be passed to an optimzer (see ?rls_optim for a nice wrapper of optim) #' val <- optim(c(lambda=0.99), rls_fit, model = model, data = D, scorefun = rmse, #' returnanalysis=FALSE) #' val$par #' # Which can then simply be applied #' rls_fit(val$par, model, D, scorefun=rmse, returnanalysis=FALSE) #' # see ?rls_optim, how optim is wrapped for a little easiere use #' #' # See rmse as a function of horizon #' fit <- rls_fit(val$par, model, D, scorefun = rmse) #' plot(fit$scoreval, xlab="Horizon k", ylab="RMSE") #' # See ?score_fit for a little more consistent way of calculating this #' #' #' # Try adding a low-pass filter to Ta #' model$add_inputs(Ta = "lp(Ta, a1=0.92)") #' # To obtain the transformed data, i.e. the data which is used as input to the RLS #' model$reset_state() #' # Generate the the transformed data #' datatr <- model$transform_data(D) #' # What did we get? #' str(datatr) #' # See the effect of low-pass filtering #' plot(D$Ta$k1, type="l") #' lines(datatr$Ta$k1, col=2) #' # Try changing the 'a1' coefficient and rerun #' # ?rls_optim for how to optimize also this coefficient #' #' #' @export rls_fit <- function(prm=NA, model, data, scorefun = NA, returnanalysis = TRUE, runcpp = TRUE, printout = TRUE){ # Check that the model is setup correctly, it will stop and print a message if not model$check(data) # Function for initializing an rls fit: # - it will change the "model" input (since it an R6 class and thus passed by reference # - If scorefun is given, e.g. rmse() then the value of this is returned # if(printout){ # Should here actually only print the ones that were found and changed? message("----------------") if(is.na(prm[1])){ message("prm=NA, so current parameters are used.") }else{ print_to_message(prm) } } # First insert the prm into the model input expressions (if prm is NA nothing is inserted) model$insert_prm(prm) # Since rls_fit is run from scratch, the init the stored inputs data (only needed when running iteratively) model$datatr <- NA model$yAR <- NA # Reset the model state (e.g. inputs state, stored iterative data, ...) model$reset_state() # Generate the 2nd stage inputs (i.e. the transformed data) datatr <- model$transform_data(data) # Initialize the fit for each horizon # Need to know how many inputs to be fitted with? np <- length(datatr) # model$Lfits <- lapply(model$kseq, function(k){ fit <- list(k = k, # Init values for the parameter vector theta = matrix(rep(0,np), ncol = 1)) if(runcpp){ # cpp rls version use covariance P fit$P <- diag(10000,np) }else{ # rls version use inverse covariance R fit$R <- diag(1/10000,np) } # return(fit) }) names(model$Lfits) <- pst("k", model$kseq) # Calculate the parameter estimates for each time point Lresult <- rls_update(model, datatr, data[[model$output]], runcpp) Yhat <- lapply_cbind_df(Lresult, function(x){ x$yhat }) nams(Yhat) <- pst("k",model$kseq) # Maybe crop the output if(!is.na(model$outputrange[1])){ Yhat[Yhat < model$outputrange[1]] <- model$outputrange[1] } if(!is.na(model$outputrange[2])){ Yhat[Yhat > model$outputrange[2]] <- model$outputrange[2] } #---------------------------------------------------------------- # Calculate the result to return # If the objective function (scorefun) is given if(class(scorefun) == "function"){ # Do some checks if( !("scoreperiod" %in% names(data)) ){ stop("data$scoreperiod is not set: Must have it set to an index (int or logical) defining which points to be evaluated in the scorefun().") } if( all(is.na(data$scoreperiod)) ){ stop("data$scoreperiod is not set correctly: It must be set to an index (int or logical) defining which points to be evaluated in the scorefun().") } # Calculate the objective function for each horizon Residuals <- residuals(Yhat, data[[model$output]]) scoreval <- sapply(1:ncol(Yhat), function(i){ scorefun(Residuals[data$scoreperiod,i]) }) nams(scoreval) <- nams(Yhat) }else{ scoreval <- NA } # if(returnanalysis){ # The estimated coefficients Lfitval <- getse(Lresult, "Theta", fun=as.data.frame) # Return the model validation data invisible(structure(list(Yhat = Yhat, model = model$clone_deep(), data = data, datatr = datatr, Lfitval = Lfitval, scoreval = scoreval), class = c("forecastmodel_fit","rls_fit"))) }else{ # Only the summed score returned val <- sum(scoreval, na.rm = TRUE) if(is.na(val)){ stop("Cannot calculate the scorefunction for any horizon") } if(printout){ print_to_message(c(scoreval,sum=val)) } return(val) } }