# Do this in a separate file to see the generated help: #library(devtools) #document() #load_all(as.package("../../onlineforecast")) #?rls_optim #' Optimize parameters (transformation stage) of RLS model #' #' This is a wrapper for \code{\link{optim}} to enable easy use of bounds and caching in the optimization. #' #' One smart trick, is to cache the optimization results. Caching can be done by providing a path to the #' \code{cachedir} argument (relative to the current working directory). #' E.g. \code{rls_optim(model, D, cachedir="cache")} will write a file in the folder 'cache', such that #' next time the same call is carried out, then the file is read instead of running the optimization again. #' See the example in \url{https://onlineforecasting.org/vignettes/nice-tricks.html}. #' #' @title Optimize parameters for onlineforecast model fitted with RLS #' @param model The onlineforecast model, including inputs, output, kseq, p #' @param data The data.list which holds the data on which the model is fitted. #' @param kseq The horizons to fit for (if not set, then model$kseq is used) #' @param scorefun The function to be score used for calculating the score to be optimized. #' @param cachedir A character specifying the path (and prefix) of the cache file name. If set to \code{""}, then no cache will be loaded or written. See \url{https://onlineforecasting.org/vignettes/nice-tricks.html} for examples. #' @param cachererun A logical controlling whether to run the optimization even if the cache exists. #' @param printout A logical determining if the score function is printed out in each iteration of the optimization. #' @param method The method argument for \code{\link{optim}}. #' @param ... Additional parameters to \code{\link{optim}} #' @return Result object of optim(). #' Parameters resulting from the optimization can be found from \code{result$par} #' @seealso \code{link{optim}} for how to control the optimization. #' @examples #' #' # Take data #' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01")) #' D$y <- D$heatload #' # Define a simple model #' model <- forecastmodel$new() #' model$add_inputs(Ta = "Ta", mu = "one()") #' model$add_regprm("rls_prm(lambda=0.99)") #' #' # Before fitting the model, define which points to include in the evaluation of the score function #' D$scoreperiod <- in_range("2010-12-20", D$t) #' # And the sequence of horizons to fit for #' model$kseq <- 1:6 #' # Now we can fit the model and get the score, as it is #' rls_fit(model=model, data=D, scorefun=rmse, returnanalysis=FALSE) #' # Or we can change the lambda #' rls_fit(c(lambda=0.9), model, D, rmse, returnanalysis=FALSE) #' #' # This could be passed to optim() (or any optimizer, see forecastmodel$insert_prm()). #' optim(c(lambda=0.98), rls_fit, model=model, data=D, scorefun=rmse, returnanalysis=FALSE, #' lower=c(lambda=0.9), upper=c(lambda=0.999), method="L-BFGS-B") #' #' # rls_optim is simply a helper, it's makes using bounds easiere and enables caching of the results #' # First add bounds for lambda (lower, init, upper) #' model$add_prmbounds(lambda = c(0.9, 0.98, 0.999)) #' #' # Now the same optimization as above can be done by #' val <- rls_optim(model, D) #' val #' #' #' @export rls_optim <- function(model, data, kseq = NA, scorefun = rmse, cachedir="", cachererun=FALSE, printout=TRUE, method="L-BFGS-B", ...){ # Take the parameters bounds from the parameter bounds set in the model init <- model$get_prmbounds("init") lower <- model$get_prmbounds("lower") upper <- model$get_prmbounds("upper") # If bounds are NA, then set if(any(is.na(lower))){ lower[is.na(lower)] <- -Inf} if(any(is.na(upper))){ lower[is.na(upper)] <- Inf} # Clone the model no matter what (at least model$kseq should not be changed no matter if optimization is stopped) m <- model$clone_deep() if(!is.na(kseq[1])){ m$kseq <- kseq }else if(!is.na(m$kseqopt[1])){ m$kseq <- m$kseqopt } # Caching the results based on some of the function arguments if(cachedir != ""){ # Have to insert the parameters in the expressions to get the right state of the model for unique checksum m$insert_prm(init) # Have to reset the state first to remove dependency of previous calls m$reset_state() # Give all the elements needed to calculate the unique cache name # This is maybe smarter, don't have to calculate the transformation of the data: cnm <- cache_name(m$regprm, getse(m$inputs, nms="expr"), m$output, m$prmbounds, m$kseq, data, objfun, init, lower, upper, cachedir = cachedir) cnm <- cache_name(rls_fit, rls_optim, m$outputrange, m$regprm, m$transform_data(data), data[[m$output]], scorefun, init, lower, upper, kseq, cachedir = cachedir) # Load the cached result if it exists if(file.exists(cnm) & !cachererun){ res <- readRDS(cnm) # Set the optimized parameters into the model model$insert_prm(res$par) return(res) } } # Run the optimization res <- optim(par = init, fn = rls_fit, # Parameters to pass to rls_fit model = m, data = data, scorefun = scorefun, printout = printout, returnanalysis = FALSE, # Parameters to pass to optim lower = lower, upper = upper, method = method, ...) # Save the result in the cachedir if(cachedir != ""){ cache_save(res, cnm)} # Set the optimized parameters into the model model$insert_prm(res$par) return(res) }