## Do this in a separate tmp.R file to check the documentation #library(devtools) #document() #load_all(as.package("../../onlineforecast")) #?make_tday #' Make an hour-of-day data.frame with k-step ahead columns. #' #' This function creates a data.frame with k-steps-ahead values of hour of day, #' such that it can be added to a data.list and used inputs to a forecast model. #' #' @param time vector of times of class "POSIXct" "POSIXt". #' @param kseq vector of integers, respresenting the desired "k-steps ahead". #' @param tstep step time of k in seconds. #' @param units to return in, e.g. "hours" or "mins" #' @return Returns a data.frame with rownames = times, colnames = k1, k2, k5, ... #' The content of the data frame is the hour of day, following the setup in "onlineforecast" setup. #' @keywords hourofday lags data.frame #' @examples #' # Create a time sequence #' tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800) #' #' # Make the time of day sequence #' make_tday(tseq, 1:10) #' #' # With 0.5 hour steps and in minutes #' make_tday(tseq, 1:10, tstep=1800, units="mins") #' #' #' @export make_tday <- function(time, kseq, tstep=3600, units="hours"){ ## The time of day (in the specified units) tday <- sapply(kseq, function(k){ tk <- time + k * tstep as.numeric( tk - trunc(tk, units="days"), units=units) }) ## set row and column names nams(tday) <- paste0('k', kseq) return( as.data.frame(tday) ) }