--- title: "Online updating of onlineforecast models" author: "Peder Bacher" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true toc_debth: 3 vignette: > %\VignetteIndexEntry{Online updating of onlineforecast models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r external-code, cache=FALSE, include=FALSE, purl = FALSE} # Have to load the knitr to use hooks library(knitr) # This vignettes name vignettename <- "online-updating" # REMEMBER: IF CHANGING IN THE shared-init (next block), then copy to the others! ``` <!--shared-init-start--> ```{r init, cache=FALSE, include=FALSE, purl=FALSE} # Width will scale all figwidth <- 12 # Scale the wide figures (100% out.width) figheight <- 4 # Heights for stacked time series plots figheight1 <- 5 figheight2 <- 6.5 figheight3 <- 8 figheight4 <- 9.5 figheight5 <- 11 # Set the size of squared figures (same height as full: figheight/figwidth) owsval <- 0.35 ows <- paste0(owsval*100,"%") ows2 <- paste0(2*owsval*100,"%") # fhs <- figwidth * owsval # Set for square fig: fig.width=fhs, fig.height=fhs, out.width=ows} # If two squared the: fig.width=2*fhs, fig.height=fhs, out.width=ows2 # Check this: https://bookdown.org/yihui/rmarkdown-cookbook/chunk-styling.html # Set the knitr options knitr::opts_chunk$set( collapse = TRUE, comment = "## ", prompt = FALSE, cache = TRUE, cache.path = paste0("../tmp/vignettes/tmp-",vignettename,"/"), fig.align="center", fig.path = paste0("../tmp/vignettes/tmp-",vignettename,"/"), fig.height = figheight, fig.width = figwidth, out.width = "100%" ) options(digits=3) hook_output <- knit_hooks$get("output") knit_hooks$set(output = function(x, options) { lines <- options$output.lines if (is.null(lines)) { return(hook_output(x, options)) # pass to default hook } x <- unlist(strsplit(x, "\n")) more <- "## ...output cropped" if (length(lines)==1) { # first n lines if (length(x) > lines) { # truncate the output, but add .... x <- c(head(x, lines), more) } } else { x <- c(more, x[lines], more) } # paste these lines together x <- paste(c(x, ""), collapse = "\n") hook_output(x, options) }) ``` [onlineforecasting]: https://onlineforecasting.org/articles/onlineforecasting.pdf [building heat load forecasting]: https://onlineforecasting.org/examples/building-heat-load-forecasting.html [onlineforecasting.org]: https://onlineforecasting.org <!--shared-init-end--> ## Intro This vignette explains how to Load the package: ```{r, echo=1:2, purl=1:2} # Load the package library(onlineforecast) #library(devtools) #load_all(as.package("../../onlineforecast")) ``` Load data, setup and define a model: ```{r, output.lines=10} # Keep the data in D to simplify notation D <- Dbuilding # Set the score period D$scoreperiod <- in_range("2010-12-20", D$t) # Set the training period D$trainperiod <- in_range(D$t[1], D$t, "2011-02-01") # Define a new model with low-pass filtering of the Ta input model <- forecastmodel$new() model$output = "heatload" model$add_inputs(Ta = "lp(Ta, a1=0.9)", mu = "one()") model$add_regprm("rls_prm(lambda=0.9)") model$add_prmbounds(Ta__a1 = c(0.5, 0.9, 0.9999), lambda = c(0.9, 0.99, 0.9999)) model$kseq <- 1:36 # Optimize the parameters rls_optim(model, subset(D,D$trainperiod), kseq = c(3,18)) ``` ## Recursive update and prediction How to get new data and update and predict. First fit on a period ```{r} iseq <- which(in_range("2010-12-15",D$t,"2011-01-01")) Dfit <- subset(D, iseq) rls_fit(model$prm, model, Dfit) ``` Now the fits are saved in the model object (its an R6 object, hence passed by reference to the functions and can be changed inside the functions). A list of fits with an entry for each horizon is in Lfits, see the two first ```{r} str(model$Lfits[1:2]) ``` Now new data arrives, take the point right after the fit period ```{r} (i <- iseq[length(iseq)] + 1) Dnew <- subset(D, i) ``` First we need to transform the new data (This must only be done once for each new data, since some transform functions, e.g. lp(), actually keep states, see the detailed description in ) ```{r} Dnew_transformed <- model$transform_data(Dnew) ``` Then we can update the parameters using the transformed data ```{r} rls_update(model, Dnew_transformed, Dnew[[model$output]]) ``` Calculate predictions using the new data and the updated fits (rls coefficient estimates in model$Lfits[[k]]$theta) ```{r} yhat <- rls_predict(model, Dnew_transformed) ``` Plot to see that it fits the observations ```{r} iseq <- i+model$kseq plot(D$t[iseq], D$heatload[iseq], type = "b", xlab = "t", ylab = "y") lines(D$t[iseq], yhat, type = "b", col = 2) legend("topright", c("observations",pst("predictions (",min(model$kseq)," to ",max(model$kseq)," steps ahead)")), lty = 1, col = 1:2) ``` Run this for a longer period to verify that the same forecasts are obtained (in one go vs. iteratively) First in one go ```{r} val <- rls_fit(model$prm, model, D, returnanalysis = TRUE) D$Yhat1 <- val$Yhat ``` and then iteratively ```{r} itrain <- which(in_range("2010-12-15",D$t,"2011-01-01")) itest <- which(in_range("2011-01-01",D$t,"2011-01-04")) rls_fit(model$prm, model, subset(D, itrain)) D$Yhat2 <- data.frame(matrix(NA, nrow(D$Yhat1), ncol(D$Yhat1))) names(D$Yhat2) <- names(D$Yhat1) for(i in itest){ Dnew <- subset(D, i) Dnewtr <- model$transform_data(Dnew) rls_update(model, Dnewtr, Dnew[[model$output]]) D$Yhat2[i, ] <- as.numeric(rls_predict(model, Dnewtr)) } ``` Compare to see the difference between the one step forecasts ```{r} D$Yhat1$k1[itest] - D$Yhat2$k1[itest] ``` Note about model$reset_states()