#!/bin/bash cd DATA datafolder=gland_data if [ -d "$datafolder" ]; then echo "YEAH, $datafolder exist" echo "next download the resnet-v2-50 pretrained weight from tensorflow website..............." else echo "download the GlaS dataset ...................................." wget https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/warwick_qu_dataset_released_2016_07_08.zip unzip warwick_qu_dataset_released_2016_07_08.zip mv 'Warwick QU Dataset (Released 2016_07_08)' gland_data rm -rf warwick_qu_dataset_released_2016_07_08.zip rm -rf __MACOSX fi cd .. pwd echo "download the resnet-v2-50 pretrained weight............." pretrainfolder=pretrain_model if [ -d "$pretrainfolder" ]; then echo "YEAH, folder $pretrainfolder exists" else echo "create the folder to save resnet-v2-50 pretrained weight" mkdir $pretrainfolder fi resnetname=resnet_v2_50.ckpt cd pretrain_model if [ -f "$resnetname" ]; then echo "YEAH, $resnetname exists" echo "next prepare the dataset ...................." else echo "download the resnet-v2-50 pretrained weight............." wget http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz tar -xvf resnet_v2_50_2017_04_14.tar.gz rm resnet_v2_50_2017_04_14.tar.gz rm train.graph rm eval.graph fi cd .. echo "print current directory" pwd echo "prepare the dataset" python3 -c 'import data_utils.glanddata as gd;gd.transfer_data_to_dict()' python3 -c 'import data_utils.glanddata as gd;gd.transfer_data_to_dict_test()' echo "-------------------------------" echo "YEAH, FINISH PREPARING THE DATA" echo "-------------------------------"