# -*- coding: utf-8 -*- """ Created on Wed Mar 7 16:42:15 2018 This file is for selecting the most uncertain images in each acquisition step based on the updated model @author: s161488 """ import tensorflow as tf from data_utils.prepare_data import padding_training_data, prepare_train_data from models.inference import ResNet_V2_DMNN from models.acquistion_full_image import extract_informative_index import numpy as np def selection(test_data_statistics_dir, ckpt_dir, acqu_method, acqu_index, num_select_point_from_pool, agg_method, agg_quantile_cri, data_path='/home/blia/Exp_Data/Data/glanddata.npy', save=False): # --------Here lots of parameters need to be set------Or maybe we could set it in the configuration file-----# if save is True: if not os.path.exists(test_data_statistics_dir): os.makedirs(test_data_statistics_dir) batch_size = 1 targ_height_npy = 528 # this is for padding images targ_width_npy = 784 # this is for padding images ckpt_dir = ckpt_dir image_c = 3 MOVING_AVERAGE_DECAY = 0.999 num_sample = 1 num_sample_drop = 30 Dropout_State = True selec_training_index = np.zeros([2, 5]) selec_training_index[0, :] = [0, 1, 2, 3, 4] # this is the index for the initial benign images selec_training_index[1, :] = [2, 4, 5, 6, 7] # this is the index for the initial malignant images selec_training_index = selec_training_index.astype('int64') with tf.Graph().as_default(): # The placeholder below is for extracting the input for the network ##### images_train = tf.placeholder(tf.float32, [batch_size, targ_height_npy, targ_width_npy, image_c]) instance_labels_train = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1]) edges_labels_train = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1]) phase_train = tf.placeholder(tf.bool, shape=None, name="training_state") dropout_phase = tf.placeholder(tf.bool, shape=None, name="dropout_state") data_train, data_pool, data_val = prepare_train_data(data_path, selec_training_index[0, :], selec_training_index[1, :]) x_image_pl, y_label_pl, y_edge_pl = padding_training_data(data_pool[0], data_pool[1], data_pool[2], targ_height_npy, targ_width_npy) print("The pooling data size %d" % np.shape(x_image_pl)[0]) y_imindex_pl = np.array(data_pool[-2]) y_clsindex_pl = np.array(data_pool[-1]) if acqu_index is not None: for remove_data_row in range(np.shape(acqu_index)[0]): print("Number of benign and malignant samples in previous selection", y_clsindex_pl[acqu_index[remove_data_row, :]]) removed_image_index = y_imindex_pl[acqu_index[remove_data_row, :]] print("Already selected image index", removed_image_index) image_tot_index = range(np.shape(x_image_pl)[0]) image_index_left = np.delete(image_tot_index, acqu_index[remove_data_row, :]) x_image_pl = x_image_pl[image_index_left] y_label_pl = y_label_pl[image_index_left] y_edge_pl = y_edge_pl[image_index_left] y_clsindex_pl = y_clsindex_pl[image_index_left] y_imindex_pl = y_imindex_pl[image_index_left] print([a in removed_image_index for a in y_imindex_pl]) print("The shape of pool data after selection", np.shape(x_image_pl)[0]) # ------------------------------Here is for build up the network-------------------------------------### fb_logits, ed_logits = ResNet_V2_DMNN(images=images_train, training_state=phase_train, dropout_state=dropout_phase, Num_Classes=2) edge_prob = tf.nn.softmax(tf.add_n(ed_logits)) fb_prob = tf.nn.softmax(tf.add_n(fb_logits)) var_train = tf.trainable_variables() variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY) variable_averages.apply(var_train) variables_to_restore = variable_averages.variables_to_restore(tf.moving_average_variables()) saver = tf.train.Saver(variables_to_restore) print(" =====================================================") print("Dropout Phase", Dropout_State) print("The acquire method", acqu_method) print("The number of repeat times", num_sample) print("The number of dropout times", num_sample_drop) print("The images which needs to removed from pool set are:", acqu_index) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(ckpt_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("restore parameter from ", ckpt.model_checkpoint_path) ArgIndex = np.zeros([num_select_point_from_pool, np.shape(acqu_method)[0]]) for Repeat in range(num_sample): ed_prob_tot = [] fb_prob_tot = [] fb_prob_var_tot = [] # ed_prob_var_tot = [] fb_bald_mean_tot = [] # ed_bald_mean_tot = [] num_image = np.shape(x_image_pl)[0] for single_image in range(num_image): feed_dict_op = {images_train: np.expand_dims(x_image_pl[single_image], 0), instance_labels_train: np.expand_dims(y_label_pl[single_image], 0), edges_labels_train: np.expand_dims(y_edge_pl[single_image], 0), phase_train: False, dropout_phase: Dropout_State} fb_prob_per_image = [] ed_prob_per_image = [] fb_bald_per_image = [] ed_bald_per_image = [] fetches_pool = [fb_prob, edge_prob] for single_sample in range(num_sample_drop): _fb_prob, _ed_prob = sess.run(fetches=fetches_pool, feed_dict=feed_dict_op) single_fb_bald = _fb_prob * np.log(_fb_prob + 1e-08) single_ed_bald = _ed_prob * np.log(_ed_prob + 1e-08) fb_bald_per_image.append(single_fb_bald) # ed_bald_per_image.append(single_ed_bald) fb_prob_per_image.append(_fb_prob[0]) # ed_prob_per_image.append(_ed_prob[0]) fb_pred = np.mean(fb_prob_per_image, axis=0) # ed_pred = np.mean(ed_prob_per_image, axis=0) fb_prob_tot.append(fb_pred) # ed_prob_tot.append(ed_pred) fb_prob_var_tot.append(np.std(fb_prob_per_image, axis=0)) # ed_prob_var_tot.append(np.std(ed_prob_per_image, axis=0)) fb_bald_mean_tot.append(np.mean(fb_bald_per_image, axis=0)) # ed_bald_mean_tot.append(np.mean(ed_bald_per_image, axis=0)) fb_bald_mean_tot = np.squeeze(np.array(fb_bald_mean_tot), axis=1) # ed_bald_mean_tot = np.squeeze(np.array(ed_bald_mean_tot), axis=1) print("Using seletion method", acqu_method) acqu_method_index = 0 for single_acqu_method in acqu_method: ArgIndex[:, acqu_method_index] = extract_informative_index(single_acqu_method, x_image_pl, np.array(fb_prob_tot), np.array(fb_prob_var_tot), fb_bald_mean_tot, num_select_point_from_pool, agg_method, agg_quantile_cri) print("Finish method", single_acqu_method) acqu_method_index = acqu_method_index + 1 # np.save(os.path.join(test_data_statistics_dir, 'stat_tot'), stat_tot) # np.save(os.path.join(test_data_statistics_dir, 'fbprob'), fb_prob_tot) # np.save(os.path.join(test_data_statistics_dir, 'edprob'), ed_prob_tot) # np.save(os.path.join(test_data_statistics_dir, 'fbprob_var'), fb_prob_var_tot) # np.save(os.path.join(test_data_statistics_dir, 'edprob_var'), ed_prob_var_tot) # np.save(os.path.join(test_data_statistics_dir, 'fb_bald_mean'), fb_bald_mean_tot) # np.save(os.path.join(test_data_statistics_dir, 'ed_bald_mean'), ed_bald_mean_tot) return ArgIndex