TECHNICAL UNIVERSITY OF DENMARK

COURSE NAME INTRODUCTION TO PROGRAMMING AND DATA PROCESSING
COURSE NUMBER 02633 (02631, 02632, 02634)

AIDS ALLOWED ALL AIDS

EXAM DURATION 2 HOURS

WEIGHTING ALL EXERCISES HAVE EQUAL WEIGHT

CONTENTS
ASSIGNMENT 1: WATER HEIGHT v v v v v e 2
ASSIGNMENT 2: ASTRONOMICAL SEASONt v v i it e e e e e e e e e e e s e 3
ASSIGNMENT 3: TIC-TAC-TOE v i i i e e e e e e e e e e e e e e e s e s e 4
ASSIGNMENT 4: STANDARDIZE ADDRESS . . v v v v v v v e e e e e e e e e e e e e e e s e 5
ASSIGNMENT 5: TIME ANGLE . . .« v it e e e e e e e e e e e e e e e e e s e s e 6

SUBMISSION DETAILS

You must hand in your solution electronically:

1.

2.

You can test your solutions individually on Code Judge under Fzam. When you upload a solution on
CodeJudge, the test example given in the assignment description will be run on your solution. If your
solution passes this single test, it will appear as Submitted. This means that your solution passes on
this single test example. You can upload to CodeJudge as many times as you like during the exam.

You must upload all your solutions at Online Exam. Each assignment must be uploaded as one
separate .py file, given the same name as the function in the assignment:

water_height.py

astronomical_season.py

)
)

c) tictactoe.py
) standardize_address.py
)

time_angle.py

The files must be handed in separately and must have these exact filenames.

After the exam, your solutions submitted to Online Exam will be automatically evaluated on CodeJudge
on a range of different tests, to check that they work correctly in general. The assessment of your solution
is based only on how many of the automated tests it passes.

Make sure that your code follows the specifications exactly.

Each solution shall not contain any additional code beyond the specified function, though import
statements can be included.

Remember, you can check if your solutions follow the specifications by uploading them to CodeJudge.

Note that all vectors and matrices used as input or output must be numpy arrays.

1of 6

https://dtu.codejudge.net/prog-jun22/assignments/
http://onlineeksamen.dtu.dk/

Water height

The height of the water in a pond changes daily governed by two contributions: the constant decrease of
height due to the water outflow and the variable increase of height due to the rain. Given the water height
for one day and the rain value r, the water height for the next day can be computed as

htoday = hyesterday +7r—2.

If the computed value is negative it should be replaced by 0, indicating that the pond is empty. The
computation can be repeated for any number of days, as long as we have rain values.

B Problem definition

Write a function water_height which takes an initial water height hg and a vector r with rain values for
a number of days as input. The function should return a water height after the days have passed. The
function should also work if r contains only one or no days. (In case of no days, hy should be returned.)

B Solution template

def water_height(hO, r):
insert your code

return h
Input
ho A non-negative number with initial water height.
r A vector with rain values (non-negative numbers) for a number of days. A vector may contain

multiple, only one, or no elements.

Output
h The water height after the number of days has passed.
B Example

Consider the input values hg =5andr=[45 0 1.5 0 0 05 1 2 5]

After the first from the number of days, the water height is hy = 5+ 4.5 — 2 = 7.5. After the second
day we have ho = 7.5+ 0 — 2 = 5.5. After the third day hs = 5.5+ 1.5 — 2 = 5. After the fourth day
hy =5+ 0—2 = 3. After the fifth day hs = 3+ 0 — 2 = 1. After the sixth day h¢ =1+0.5 -2 = —-0.5
which gets replaced by 0. After the seventh day hy = 0+ 1 — 2 = —1 which gets replaced by 0. After the
eighth day hg = 0+ 2 — 2 = 0. After the ninth day hg = 0+ 5 — 2 = 3. This is the last day so the function
should return

1o

20f6

LGN Astronomical season

If we ignore small variations, the four astronomical seasons start on the following days of the year: 20th of
March (the first day of the astronomical spring), 21st of June (the first day of the astronomical summer), 23rd
of September (the first day of the astronomical autumn), 21st of December (the first day of the astronomical
winter).

B Problem definition

Write a function astronomical_season that takes a date in the format dd/mm-yyyy as input. The function
should return the astronomical season corresponding to the given date. The return value should be either
spring, summer, autumn, or winter.

B Solution template

def astronomical season(date):
insert your code
return season

Input
date A string with the date in the format dd/mm-yyyy.

Output
season A string with the astronomical season, either spring, summer, autumn or winter.

B Example

Consider an input 09/12-2020, that is, the 9th of December 2020. This date occurs after the first day of
astronomical autumn which starts with 23/09-2020, but before (and not on) the first day of astronomical
winter which starts with 21/12-2020. Therefore, the function should return

autumn.

I 2 .

30of6

GG Tic-tac-toe

Tic-tac-toe (noughts and crosses) is a game for two players who take turns marking the fields in a 3 x 3 grid
with either X or O. The winner is the player who succeeds in placing three marks in a row, which may be
either horizontal, vertical, or diagonal, as shown in the illustration.

O|X|X X, 0| X O X
X|X|O O X X Q| X
@) O X O

A tic-tac-toe board may be represented as a 3 x 3 matrix with numerical values 0 (an empty field), 1
(a field marked X) or 2 (a field marked O). Given such a matrix we want to know whether the board is
valid, and for a valid board we want to know whether there is a winner. A board is valid if it could have
been obtained by X placing the first mark, players taking turns, and then stopping the game at the first
occurrence of a winning row.

In other words, the following conditions apply:

X wins There is exactly one winning row, and it is made by X. Furthermore, X placed
the last mark, so there is exactly one more X mark than O marks.
O wins There is exactly one winning row, and it is made by O. Furthermore, O placed
the last mark, so there is equally many X an O marks.
No winner There are no winning rows. Furthermore, there are either equally many X and
O marks, or one more X mark than O marks.
Invalid board All other situations.

B Problem definition
Write a function tictactoe which takes a matrix representing a tic-tac-toe board as input. The function
should return either -1 (invalid board), 0 (no winner), 1 (X wins) or 2 (O wins).

B Solution template

def tictactoe(board):
insert your code
return score

Input
board A 3 x 3 matrix with numbers 0, 1 or 2. The matrix represents tic-tac-toe board.
Output
score A number -1, 0, 1, or 2. The number indicates invalid board (-1), no winner (0) or the winner
(1 or 2).
B Example
Consider the matrix
2 1 1
board= | 1 1 2
200

which represents the leftmost tic-tac-toe board in the illustration above.

Neither X nor O has succeeded in placing three marks in row. So neither X or O wins.

We need to check whether the board is valid. The board contains 4 X-marks and 3 O-marks, so X has
exactly one mark more than O marks. This means that the board is valid, as it could have been obtained
by X making the first mark, and then players taking turns for three more marks each.

In conclusion, the function should return the value for no winner which is

0.

I 3 .

4 of 6

Standardize address

You need to combine addresses from multiple sources, with different ways of writing the address line which
includes the city name and the postal (zip) code. The differences are:

o Some write postal code first (like for example 2840 Holte), while others write city first (for example
Holte 2840).

o Some use a space to separate the parts of the address (like in the examples above), while others use
underscore (like for example 2840_Holte.)

You want to standardize the addresses such that the postal code always comes first, and that space is always
used for separating the parts of the address. The city name may consist of multiple words, but you may
assume that the city name only consists of letters and word separator (space or underscore). The postal
code may be of different length, but you may assume that it only consists of digits. Furthermore, the postal
code is always either at the beginning or at the end of the address line.

B Problem definition

Write a function standardize_address which takes as input an address line, which may lack standardization
in terms of word separator and the ordering of address parts. The function should return the standardized
address line.

B Solution template

def standardize address(a):
insert your code
return s

Input
a A string with the address line which may lack standardization.

Output
s A string with the standardized address line.

B Example

Consider the address line New York 10001. This address line uses spaces, so it requires no change in the
word separator. However, the postal code 10001 is at the end of the address line after the city name New
York. So the postal code needs to be moved to the beginning of the address line. The function should return
the standardized address line

10001 New York.

I 4 .

50f6

Time angle

We want to keep track of when the two hands of the (analog) clock overlap. For this, we want to compute
the angle from the minute hand to the hour hand for every minute of the day. The angle needs to be in
a clockwise direction, meaning the angle which the minute hand should cover to reach the hour hand, as
shown in the illustration.

Given a time of the day, the clockwise angles of the two hands (in degrees, and relative to the position
pointing upwards) may be computed as
1 m o m o
Qhour = T2 <h + 60) - 360 and Aminute = 60 360
where h is the hour between 0 and 11, and m is the minute between 0 and 59. If the hour is given by a
number larger than 11, including the situation where the time is given in the 24-hour format, it needs to
be reduced by subtracting 12 from its value. The angle from the minute hand to the hour hand may be
computed as

G = Ghour — @minute-

If this value is negative, the angle is counterclockwise. To get the clockwise angle, you need to add 360° to
the computed value.

B Problem definition
Write a function time_angle that takes an hour and a minute for the time of day as input. The function
should return a clockwise angle from the minute hand to the hour hand.

B Solution template

def time_angle(hour, minute):
insert your code
return angle

Input
hour An integer between 0 and 23 representing an hour for the time of day.
minute An integer between 0 and 59 representing a minute for the time of day.

Output
angle An angle (in degrees) from the minute hand to the hour hand (in clockwise direction).

B Example
Consider the input hour = 8, minute = 20 (as on the leftmost clock in the illustration above). The hour
value is not larger than 11, so we do not need to reduce it. We compute

1 20 o o 20 . .
Qhour = 19 <8 + 60) - 360° = 250 and Aminute = @ - 360° = 120°,

@ = Ghour — Aminute = 250° — 120° = 130°.
The computed value is not negative, so we do not need to convert it to a clockwise angle. Therefore, the

function should return

130.

I S .

6 of 6

	Assignment 1: Water height
	Assignment 2: Astronomical season
	Assignment 3: Tic-tac-toe
	Assignment 4: Standardize address
	Assignment 5: Time angle

