Technical University of Denmark

Written examination date: 17 May 2021

w—
ﬁ
=

i

Course title: Programming in C++ Page 1 of 15 pages

Course number: 02393

Aids allowed: All aids allowed

Exam duration: 4 hours

Weighting: pass/fail

Exercises: 4 exercises of 2.5 points each, for a total of 10 points.

Submission details:

1.

You must submit your solution on DTU Digital Eksamen. You can do it only
once, so submit only when you have completed your work.

. You must submit your solution as one ZIP archive containing the following files,

with these exact names:

e exZZ-library.cpp, where ZZ ranges from 01 to 04 (i.e., one per exercise);

e ex04-library.h (additionally required for exercise 4).

. You can test your solutions by uploading them on CodeJudge, under “Reexam May

20217 at:
https://dtu.codejudge.net/02393-e20/exercises

. You can test your solutions on CodeJudge as many times as you like. Uploads on

CodeJudge are not official submissions and will not affect your grade.

. Additional tests may be run on your submissions after the exam.

Feel free to add comments to your code.

Suggestion: read all exercises before starting your work, and begin with the tasks
that look easier.

https://dtu.codejudge.net/02393-e20/exercises

02393 Programming in C++

EXERCISE 1. VECTOR FIELDS (2.5 POINTS)

Alice needs to perform computations on wvector fields, i.e., matrices having bidimensional
geometric vectors as elements. Alice has already written some code. Her first test program
is in file exO1-main. cpp and the (incomplete) code with some functions she needs is in files
ex01-1library.h and exO1-library.cpp. Such files are available with this exam paper
(in a separate ZIP archive), and they are also reported in the next pages.

Structure of the code. A geometric vector is represented as a struct Vector with
two fields, named x and y: they are, respectively, the x and y component of the vector.
Alice’s code already includes the function:

void deleteField(Vector **A, unsigned int nRows)

which deallocates a vector field allocated with createField() (see task (a) below).

Tasks. Help Alice by completing the following tasks. You need to edit and submit the
file ex01-library.cpp.

(a) Implement the function:
Complex **createField(unsigned int m, unsigned int n, Vector v)

The function must return an array of m x n Vectors, i.e., Vector *x*. It must allocate
the required memory, and initialise each array element as argument v.

(b) Implement the function:
void displayField(Vector **A, unsigned int m, unsigned int n)

The function must print on screen the contents of the vector field A of size m x n:

e cach vector must be printed as (x,y) without spaces between the x,y field values;
e clements on a same row must be separated by one space;
e there must be no space after the last element of each row.

For example, a 2 x 4 vector field should look like:
(1,2) (2,5) (4,4) (1,2)
(1,2) (0,2) (0,2) (2,6)

This exercise continues on the next page. . .

Technical University of Denmark Page 2 of 15

02393 Programming in C++

(c)

(d)

Implement the function:

void addFields(Vector *xA, Vector **B, Vector *x*C,
unsigned int m, unsigned int n)

Where:

e argument A is a vector field of size m x n;

e argument B is a vector field of size m x n;

e argument C is a vector field of size m x n.
The function must add the corresponding elements of A by B, storing the result in C.
Therefore, as in standard matrix addition, the element at row ¢ and column j of C is

computed as:
Cij = Rij+Bij

where “+” is the standard vector addition: the addition of two Vectors u and v is a
Vector whose fields have values u.x+v.x and u.y+v.y.

Implement the function:

void scaleField(Vector **A, double c, unsigned int m, unsigned int n)

Where:

e argument A is a vector field of size m x n;

e argument c is a scalar value.

The function must multiply each element of A by c, storing the result in A itself.
More precisely, the element at row ¢ and column j of A must be updated as follows:

Rij = Aijxc

wy”

where “x” is the standard vector scalar multiplication: to multiply a Vector v by a
scalar ¢, we multiply both v.x and v.y by c.

Technical University of Denmark Page 3 of 15

02393 Programming in C++

File ex01-main.cpp File ex01-library.cpp

#include <iostream>
#include "exOl-library.h"

#include <iostream>
#include "exOl-library.h"
using namespace std;
using namespace std;
int main() {
Vector c

{1, 2}; // Task 1(a). Implement this function

Vector d = {2, -2};

Vector **A = createField(3, 3, c);
A[11[1] = {2, 2};

cout << "Vector field A:" << endl;
displayField(A, 3, 3);

cout << endl;

Vector **B = createField(3, 3, d);
B[o][0] = B[2]1[2] = {9, 8};

cout << "Vector field B:" << endl;
displayField(B, 3, 3);

cout << endl;

Vector **R = createField(3, 3, {0,0});
cout << "Result of A + B:" << endl;
addFields(A, B, R, 3, 3);
displayField(R, 3, 3);

cout << endl;

Vector *xcreateField(unsigned int m, unsigned int n, Vector v) {

// Write your code here

}

// Task 1(b). Implement this function

void displayField(Vector **A, unsigned int m, unsigned int n) {

// Write your code here

}

// Task 1(c). Implement this function
void addFields(Vector **A, Vector **B, Vector **C,
unsigned int m, unsigned int n) {
// Write your code here

}

// Task 1(d). Implement this function
void scaleField(Vector #**A, double c,
unsigned int m, unsigned int n) {
// Write your code here

}
cout << "Resultyof_scaling A by 2:" << endl;
scaleField(A, 2, 3, 3);
displayField(A, 3, 3);

// Do not modify

void deleteField(Vector **A, unsigned int nRows) {
for (unsigned int i = 0; i < nRows; ++i) {

deleteField(A, 3); deleteField(B, 3); delete[] A[i];

deleteField(R, 3); }

return 0; delete[] A;

File ex01-library.h

#ifndef EXO1_LIBRARY_H_
#define EXO1_LIBRARY_H_

struct Vector {
double x;
double y;

};

Vector **xcreateField(unsigned int m, unsigned int n, Vector v);
void displayField(Vector **A, unsigned int m, unsigned int n);
void addFields(Vector **A, Vector **B, Vector *xC,
unsigned int m, unsigned int n);
void scaleField(Vector **A, double c, unsigned int m, unsigned int n);
void deleteField(Vector **A, unsigned int nRows);

#endif /* EXO1_LIBRARY_H_ */

Technical University of Denmark Page 4 of 15

02393 Programming in C++

EXERCISE 2. RLE LINKED LIST (2.5 POINTS)

Bob wants to build a linked list with a compression technique called Run-Length Encoding
(RLE): each element of the list records on how many times its value is repeated. For
instance, the following sequence of values

1125333334242 55555 0505050554242 42 42 42 42 42 42
is compressed with RLE as a sequence of values with their respective number of repetitions:
1ixg) 25(x1) 3x5) 42(x2) Sx10) 42(xs)

Bob has already written some code. His first test program is in file ex02-main. cpp
and the (incomplete) code with some functions he needs is in files ex02-1ibrary.h and
ex02-library.cpp. Such files are available with this exam paper (in a separate ZIP
archive), and they are also reported in the next pages.

Structure of the code. An RLE list element is represented as a struct Elem with
three fields, named value, times, and next: they are, respectively, the value of the list
element, the number of times that value is repeated, and the pointer to the next list element
(or nullptr when there are no more elements). An empty list is represented as an Elemx
pointer equal to nullptr. Bob’s code already includes the function:

void displayRLEList(Elem *1list)

which prints an RLE list on screen, in the compressed form shown above.

Tasks. Help Bob by completing the following tasks. You need to edit and submit the
file ex02-1ibrary.cpp.

(a) Implement the function:
Elem* reverse(Elem *1list);

which reverses the RLE list 1ist in place, that is, by updating the pointers of its
elements. The function returns a pointer to the first element of the reversed list
(which corresponds to the last element of the original 1ist). For example: if the
RLE list 7 (25) 9xg0) is reversed, the result is 9gg) 7 (x25)-

This ezercise continues on the next page. ..

Technical University of Denmark Page 5 of 15

02393 Programming in C++

(b)

(c)

Implement the function:
Elem* concatenate(Elem *1istl, Elem *1list2)

which concatenates the lists 1ist1 and 1ist2, and returns a pointer to the first
Element of the resulting list. The function must compress the repetitions resulting
from the concatenation. For example, if the arguments of the function are:

o listl = 72 6x1) Ix2)
o list2 = 9.3 103

then the resulting list must be:

7(x2) 6(x1) 9(x5) 10(x3)

Notice that the last element of 1listl and the first element of 1ist2 have been
compressed into one.

Important: the function must not use delete on any element of 1istl nor list2.
Besides this, you can choose to implement the function by either creating and re-
turning a new list, or modifying 1ist1 and list2.

Implement the function:
int sum(Elem *1list)

which returns the sum of the elements of 1ist, taking into account their repetitions.
For example, if 1ist is 749) 6x1) 9x2), then the function must return 38.

Technical University of Denmark Page 6 of 15

02393 Programming in C++

File ex02-library.h File ex02-library.cpp
#ifndef EXO2_LIBRARY_H_ #include <iostream>
#define EXO02_LIBRARY_H_ #include "ex02-library.h"

using namespace std;
struct Elem {

int value; // Task 2(a). Implement this function
unsigned int times; // Number of repetitions Elem* reverse(Elem *list) {
Elem *next; // Write your code here
}; }
void displayRLEList(Elem *list); // Task 2(b). Implement this function
Elem* concatenate(Elem *listl, Elem *1ist2) {
Elem* reverse(Elem *list); // Write your code here
Elem* concatenate(Elem *1listl, Elem *1list2); 3

int sum(Elem *list);
// Task 2(c). Implement this function
#endif /* EXO02_LIBRARY_H_ */ int sum(Elem *1list) {
// Write your code here

}

// Do not modify
void displayRLEList(Elem *1list) {
if (list == nullptr) {
. return;
File ex02-main.cpp }
cout << " " << list->value << " (x" << list->times << ")'";

i <i >
#include <iostream displayRLEList (1ist->next);

#include "ex02-library.h" 3
using namespace std;

int main() {
Elem e0 = {10, 5, nullptr};
Elem el = {12, 6, &e0};

Elem e2 = {4, 10, &el};
Elem e4 = {100, 7, nullptr};
Elem e5 = {4, 3, &e4};

Elem e6 = {101, 9, &e5};

cout << "The RLE list_is: " << endl;
displayRLEList (&e2);
cout << endl;

cout << "The reversed list_ is:" << endl;

Elem *r = reverse(&e2);

displayRLEList(r);

cout << endl;

cout << "After ,concatenation, the list_ is:" << endl;
Elem *1 = concatenate(r, &e6);

displayRLEList(1);

cout << endl;

cout << "The sum of jits elements is: " << sum(l) << endl;

return 0;

Technical University of Denmark Page 7 of 15

02393 Programming in C++

EXERCISE 3. GROCERY LIST (2.5 POINTS)

Claire wants to implement a class GroceryList to store and update her grocery list. She
has already written some code: her first test program is in file ex03-main.cpp and the
(incomplete) code of the class is in files ex03-1ibrary.h and ex03-library.cpp. Such
files are available with this exam paper (in a separate ZIP archive), and they are also
reported in the next pages.

Structure of the code. Claire has represented the information about each entry in the
grocery list using a struct Info, with two fields:

e quantity: how much to buy of a certain item;

e notes: any remark about the item.
Claire knows that the map and vector containers of the C++ standard library provide
many functionalities she needs. (See hints on page 9.) Therefore, she has decided to use
the following internal (private) representation for the library:

e vector<string> items — the names of the items to buy;

e map<string,Info> itemsInfo — a mapping from strings (item names) to in-
stances of Info (the information about the item to buy).

Claire has already implemented the default constructor of GroceryList, which creates
a database with some needed items. She has also implemented the method display(),
which shows the contents of the grocery list.

Tasks. Help Claire by completing the following tasks. You need to edit and submit the
file ex03-1library.cpp.

(a) Implement the following method to add an entry to the grocery list:
void GroceryList::add(string name, unsigned int quantity, string notes)
The method must work as follows:
(a) if name is not in the grocery list, add the given name at the end of the items

vector, and map it to the given quantity and notes (by updating itemsInfo);

(b) if name is already in the grocery list, update its information in itemsInfo as
follows:

i. increase the original quantity by the given quantity. For example: if the
original quantity is 100 and the method is invoked with quantity=200, the
updated quantity must be 300;

ii. extend the original notes by adding ";" and the given notes. For example:
if the original notes are "A" and the method is invoked with notes="B",
the updated notes must be "A;B".

This ezercise continues on the next page. ..

Technical University of Denmark Page 8 of 15

02393 Programming in C++

(b) Implement the method:
bool GroceryList::remove(string name, unsigned int quantity)

This method tries to remove the given quantity from the grocery list item with the
given name; it returns true if the operation succeeds, and false otherwise. The
method must work as follows:

(a) if the grocery list does not contain an item with the given name, then the method
returns false without changing the grocery list;

(b) if the grocery list does contain an item with the given name, then:

e if the item’s quantity is lower than the given quantity, then the method
must return false without changing the grocery list.

e otherwise, the method must reduce the item’s quantity by subtracting the
given quantity; then, if the updated item quantity becomes 0, then the
method must remove the item from the shopping list. (See hints below.) In
either case, the method must return true.

(c) Implement the method:
bool GroceryList::copyEntry(string name, string newName)

This method creates a new grocery list entry named newName, by copying the inform-
ation of the item called name; it returns true if the operation succeeds, and false
otherwise. The method must work as follows:

a) if the grocery list does not contain an item with the given name, or it alread
g y g y
contains an item called newName, then the method returns false without chan-
ging the grocery list;

(b) otherwise, the method must add newName at the end of the items vector, and
update itemsInfo to map newName to the same information of name.

Hints on using maps and vectors
e A key k in a map m can be mapped to v with: m[k] = v; with this operation, the
entry for k in m is created (if not already present) or updated (if already present).
e To check if key k is present in map m, you can check: m.find(k) != m.end().
e The value mapped to a key k in a map m is obtained with: m[k].
e To remove an element from a map or a vector, you can use their erase(. . .) methods.

Technical University of Denmark Page 9 of 15

02393 Programming in C++

File ex03-main. cpp

#include <iostream>
#include "ex03-library.h"
using namespace std;

int main() {
GroceryList gl = GroceryList();

cout << "Initial,grocery, list:" << endl;
gl.display();

cout << endl << "After adding cheddar:" << endl;
gl.add("Cheddar", 500, "Not too mature");
gl.display();

cout << endl << "After removing some spinach:" << endl;
if (gl.remove("Spinach", 200)) {

gl.display();
} else {

cout << "FAILED! (this should not_ happen)" << endl;
}

cout << endl << "After ,copying ;salmon into haddock:" << endl;
if (gl.copyEntry("Salmon", "Haddock")) {
gl.display();
} else {
cout << "FAILED! (this should not_happen)" << endl;
}

return 0;

File ex03-1library.h

#ifndef EXO3_LIBRARY_H_
#define EXO3_LIBRARY_H_

#include <string>
#include <vector>
#include <map>
using namespace std;

struct Info {
unsigned int quantity;
string notes;

};

class GroceryList {

private:
vector<string> items;
map<string,Info> itemsInfo;

public:
GroceryList();
void add(string name, unsigned int quantity, string notes);
bool remove(string name, unsigned int quantity);
bool copyEntry(string name, string newName) ;
void display(Q);

}

#endif /+ EXO3_LIBRARY_H_ */

Technical University of Denmark Page 10 of 15

02393 Programming in C++

File ex03-library.cpp

#include <iostream>
#include "ex03-library.h"
using namespace std;

// Do not modify

GroceryList: :GroceryList() {
this->items.push_back("Lasagne");
this->itemsInfo["Lasagne"] = {1, "With_ eggs, if available"};

this->items.push_back("Salmon") ;
this->itemsInfo["Salmon"] = {500, "Smoked if available"};

this->items.push_back("Spinach");
this->itemsInfo["Spinach"] = {300, "Fresh"};

this->items.push_back("Dessert");
this->itemsInfo["Dessert"] = {8, "Maybe lagkage?"};
}

// Task 3(a). Implement this method
void GroceryList::add(string name, unsigned int quantity, string notes) {
// Write your code here

}

// Task 3(b). Implement this method
bool GroceryList::remove(string name, unsigned int quantity) {
// Write your code here

}

// Task 3(c). Implement this method
bool GroceryList::copyEntry(string name, string newName) {
// Write your code here

}

// Do not modify
void GroceryList::display() {
// Write your code here
for (auto it = this->items.begin(); it != this->items.end(); it++) {
Info &item = this->itemsInfo[*it];
cout << "name=’" << *it << "7’ ;. ";
cout << "quantity=" << item.quantity << ";,
cout << "notes=’" << item.notes << "’" << endl;

".
>

Technical University of Denmark Page 11 of 15

02393 Programming in C++

EXERCISE 4. FILTERING BUFFER (2.5 POINTS)

Daisy needs to develop a buffer class to store and retrieve integer values. She plans an
interface consisting of 4 methods:

e write(v) — appends value v to the buffer;
e read() — removes the oldest value from the buffer and returns it;
e occupancy() — returns the number buffered values;

e reset() — empties the buffer.

Therefore, the buffer works in FIFO (First-In-First-Out) order: e.g., if write () is invoked
to append 1, and then invoked again to append 2, then a subsequent call to read () must
return 1, and a further call must return 2.

For her application, Alice needs to implement a filtering buffer that accumulates unique
values, by remembering which values it has contained during its lifecycle. For example,
assume that a FilteringBuffer b has never contained the value 42:

e the fist time b.write(42) is called, the value 42 is appended to the buffer contents.
From now on, b remembers that it has contained 42 — even after 42 is removed by
b.read(). If b.write(42) is executed again, the operation has no effect;

e if b.reset () is called, then the buffer b is emptied, and it also “forgets” which values
it has contained in the past. Therefore, the first call b.write (42) after the reset will
append 42 to the buffer contents.

Daisy’s first test program is in the file ex04-main.cpp and the (incomplete) code of
the class is in files ex04-1library.h and ex04-1library.cpp. Such files are available with
this exam paper (in a separate ZIP archive), and they are also reported in the next pages.

Structure of the code. Daisy has defined a high-level abstract class Buffer with the
pure virtual methods write(), read(), occupancy(), and reset ().

Tasks. Help Daisy by completing the following tasks. You need to edit and submit two
files: ex04-library.h and ex04-1library.cpp.

(a) Declare in ex04-1ibrary.h and sketch in ex04-1ibrary.cpp a class FilteringBuffer
that extends Buffer. This task is completed (and passes CodeJudge tests) when
ex04-main.cpp compiles without errors. To achieve this, you will need to:

1. define a constructor for FilteringBuffer that takes one parameter: a value of
type int representing a default (it is used in point (c) below);

2. in FilteringBuffer, override the pure virtual methods of Buffer (i.e., those
with “=07”), and write (possibly non-working) placeholder implementations.

This ezercise continues on the next page. ..

Technical University of Denmark Page 12 of 15

02393 Programming in C++

(b) This is a follow-up to point (a) above. In ex04-library.cpp, write a working
implementation of the methods:

void FilteringBuffer::write(int v)
unsigned int FilteringBuffer::occupancy()

The method occupancy () returns the number of values currently stored in the buffer.
The intended behaviour of write(v) is to check the value v, and:

e if the buffer has already contained v in the past, then the method has no effect;

e otherwise, the method appends v to the buffer contents, and remembers that it
has contained v (hence, invoking write(v) again will have no effect). Corres-
pondingly, the buffer occupancy increases by 1.

(c) This is a follow-up to points (a) and (b) above. In ex04-library.cpp, write a
working implementation of the method:

int FilteringBuffer::read()

When read() is invoked, it removes the oldest value previously added by write(),
and returns it; correspondingly, the value returned by occupancy() decreases by 1.
Crucially, read() must not cause the buffer to “forget” which values it has con-
tained in the past: for example, if b.read() returns 42, then invoking b.write (42)
afterwards must have no effect — because the buffer b must remember that it has
contained the value 42 (although it might not currently contain 42).

Special case: if the buffer is empty, then read () must return the default value spe-
cified in the constructor (see point (a)l above).

(d) This is a follow-up to points (a), (b), and (c) above. In ex04-library.cpp, write
a working implementation of the method:

void FilteringBuffer::reset()

When reset () is invoked, the buffer becomes empty (hence, its occupancy becomes
0), and it also forgets which values it has contained in the past.

For example: if buffer b contains (or has contained) the value 42, then invoking
b.write(42) has no effect; however, invoking b.reset() and then b.write(42)
causes 42 to be appended to the (empty) buffer.

NOTE: you are free to define the private members of FilteringBuffer however you see
fit. For instance, you might choose to store the values in a vector<int>, or in a linked
list. Similarly, you are free to choose how to remember which values have been already
contained in the buffer. The tests will only consider the behaviour of the public methods
write(), read(), occupancy(), and reset ().

Technical University of Denmark Page 13 of 15

02393 Programming in C++

File ex04-main. cpp

#include <iostream>
#include "ex04-library.h"
using namespace std;

int main() {
Buffer *b = new FilteringBuffer(-999);

cout << "Current buffer occupancy: " << b->occupancy() << endl;
cout << "Reading from jthe buffer returns: " << b->read() << endl;

for (unsigned int i = 0; i < 10; i++) {
b->write(i * 10);
¥

cout << "Current buffer occupancy: " << b->occupancy() << endl;

for (unsigned int i = 0; i < 10; i++) {
b->write(20);
}

cout << "Current buffer occupancy:," << b->occupancy() << endl;

for (unsigned int i = 0; i < 3; i++) {
cout << "Reading from the buffer returns: " << b->read() << endl;
¥

cout << "Current buffer occupancy:," << b->occupancy() << endl;
b->reset();
cout << "Current buffer occupancy: " << b->occupancy() << endl;

cout << "Reading from the buffer returns: " << b->read() << endl;

delete b;
return 0O;

Technical University of Denmark Page 14 of 15

02393 Programming in C++

File ex04-library.h

#ifndef EXO4_LIBRARY_H_
#define EXO4_LIBRARY_H_

class Buffer {

public:
virtual void write(int v) = 0;
virtual int read() = 0;
virtual unsigned int occupancy() = 0;
virtual void reset() = 0;
virtual “Buffer();

};

// Task 4(a). Declare the class FilteringBuffer, by extending Buffer
// Write your code here

#endif /* EXO04_LIBRARY_H_ */

File ex04-library.cpp

#include "ex04-library.h"

// Task 4(a). Write a placeholder implementation of FilteringBuffer’s
// constructor and methods

// Task 4(b). Write a working implementation of write() and occupancy()
// Task 4(c). Write a working implementation of read()

// Task 4(d). Write a working implementation of reset()

// Do not modify

Buffer:: Buffer() {

// Empty destructor
}

Technical University of Denmark

Page 15 of 15

