Skip to content
Snippets Groups Projects
ex4_1_5.py 1.05 KiB
Newer Older
  • Learn to ignore specific revisions
  • bjje's avatar
    bjje committed
    # exercise 4.1.5
    
    from matplotlib.pyplot import (figure, title, subplot, plot, hist, show, 
                                   xlabel, ylabel, xticks, yticks, colorbar, cm, 
                                   imshow, suptitle)
    import numpy as np
    
    # Number of samples
    N = 1000
    
    # Standard deviation of x1
    s1 = 2
    
    # Standard deviation of x2
    s2 = 3
    
    # Correlation between x1 and x2
    corr = 0.5
    
    # Covariance matrix
    S = np.matrix([[s1*s1, corr*s1*s2], [corr*s1*s2, s2*s2]])
    
    # Mean
    mu = np.array([13, 17])
    
    # Number of bins in histogram
    nbins = 20
    
    # Generate samples from multivariate normal distribution
    X = np.random.multivariate_normal(mu, S, N)
    
    
    # Plot scatter plot of data
    figure(figsize=(12,8))
    suptitle('2-D Normal distribution')
    
    subplot(1,2,1)
    plot(X[:,0], X[:,1], 'x')
    xlabel('x1'); ylabel('x2')
    title('Scatter plot of data')
    
    subplot(1,2,2)
    x = np.histogram2d(X[:,0], X[:,1], nbins)
    imshow(x[0], cmap=cm.gray_r, interpolation='None', origin='lower')
    colorbar()
    xlabel('x1'); ylabel('x2'); xticks([]); yticks([]);
    title('2D histogram')
    
    show()
    
    print('Ran Exercise 4.1.5')