Skip to content
Snippets Groups Projects
ex4_1_5.py 961 B
Newer Older
  • Learn to ignore specific revisions
  • bjje's avatar
    bjje committed
    # exercise 4.1.5
    
    import numpy as np
    import matplotlib.pyplot as plt 
    
    # Number of samples
    N = 1000
    
    # Standard deviation of x1
    s1 = 2
    
    # Standard deviation of x2
    s2 = 3
    
    # Correlation between x1 and x2
    corr = 0.5
    
    # Covariance matrix
    S = np.matrix([[s1 * s1, corr * s1 * s2], [corr * s1 * s2, s2 * s2]])
    
    # Mean
    mu = np.array([13, 17])
    
    # Number of bins in histogram
    nbins = 20
    
    # Generate samples from multivariate normal distribution
    X = np.random.multivariate_normal(mu, S, N)
    
    
    # Plot scatter plot of data
    plt.figure(figsize=(12, 8))
    plt.suptitle("2-D Normal distribution")
    
    plt.subplot(1, 2, 1)
    plt.plot(X[:, 0], X[:, 1], "x")
    plt.xlabel("x1")
    plt.ylabel("x2")
    plt.title("Scatter plot of data")
    
    plt.subplot(1, 2, 2)
    x = np.histogram2d(X[:, 0], X[:, 1], nbins)
    plt.imshow(x[0], cmap=plt.cm.gray_r, interpolation="None", origin="lower")
    plt.colorbar()
    plt.xlabel("x1")
    plt.ylabel("x2")
    plt.xticks([])
    plt.yticks([])
    plt.title("2D histogram")
    
    plt.show()