Skip to content
Snippets Groups Projects
ex4_1_6.py 1.07 KiB
Newer Older
  • Learn to ignore specific revisions
  • bjje's avatar
    bjje committed
    # exercise 4.1.6
    import importlib_resources
    import numpy as np
    import scipy.linalg as linalg
    import matplotlib.pyplot as plt 
    from scipy.io import loadmat
    
    filename = importlib_resources.files("dtuimldmtools").joinpath("data/zipdata.mat")
    # Digits to include in analysis (to include all: n = range(10))
    n = [0]
    
    # Load Matlab data file to python dict structure
    # and extract variables of interest
    traindata = loadmat(filename)["traindata"]
    X = traindata[:, 1:]
    y = traindata[:, 0]
    N, M = X.shape
    C = len(n)
    
    # Remove digits that are not to be inspected
    class_mask = np.zeros(N).astype(bool)
    for v in n:
        cmsk = y == v
        class_mask = class_mask | cmsk
    X = X[class_mask, :]
    y = y[class_mask]
    N = np.shape(X)[0]
    
    mu = X.mean(axis=0)
    s = X.std(ddof=1, axis=0)
    S = np.cov(X, rowvar=0, ddof=1)
    
    plt.figure()
    plt.subplot(1, 2, 1)
    I = np.reshape(mu, (16, 16))
    plt.imshow(I, cmap=plt.cm.gray_r)
    plt.title("Mean")
    plt.xticks([])
    plt.yticks([])
    plt.subplot(1, 2, 2)
    I = np.reshape(s, (16, 16))
    plt.imshow(I, cmap=plt.cm.gray_r)
    plt.title("Standard deviation")
    plt.xticks([])
    plt.yticks([])
    
    plt.show()