Skip to content
Snippets Groups Projects
Commit bf5a1b1c authored by pheithar's avatar pheithar
Browse files

Header fix

parent 9fb05005
No related branches found
No related tags found
No related merge requests found
# exercise 3.3.1
# exercise 2.2.1
import importlib_resources
import matplotlib.pyplot as plt
......@@ -18,60 +18,68 @@ similarity_measure = "SMC"
# Load Matlab data file to python dict structure
X = loadmat(filename)["X"]
# You can also try the CBCL faces dataset (remember to change 'transpose')
#X = loadmat('../Data/wildfaces_grayscale.mat')['X']
# X = loadmat('../Data/wildfaces_grayscale.mat')['X']
N, M = X.shape
transpose = False # should the plotted images be transposed?
transpose = False # should the plotted images be transposed?
# Search the face database for similar faces
# Search the face database for similar faces
# Index of all other images than i
noti = list(range(0,i)) + list(range(i+1,N))
noti = list(range(0, i)) + list(range(i + 1, N))
# Compute similarity between image i and all others
sim = similarity(X[i,:], X[noti,:], similarity_measure)
sim = similarity(X[i, :], X[noti, :], similarity_measure)
sim = sim.tolist()[0]
# Tuples of sorted similarities and their indices
sim_to_index = sorted(zip(sim,noti))
sim_to_index = sorted(zip(sim, noti))
# Visualize query image and 5 most/least similar images
plt.figure(figsize=(12,8))
plt.subplot(3,1,1)
plt.figure(figsize=(12, 8))
plt.subplot(3, 1, 1)
img_hw = int(np.sqrt(len(X[0])))
img = np.reshape(X[i], (img_hw,img_hw))
if transpose: img = img.T
img = np.reshape(X[i], (img_hw, img_hw))
if transpose:
img = img.T
plt.imshow(img, cmap=plt.cm.gray)
plt.xticks([]); plt.yticks([])
plt.title('Query image')
plt.ylabel('image #{0}'.format(i))
plt.xticks([])
plt.yticks([])
plt.title("Query image")
plt.ylabel("image #{0}".format(i))
for ms in range(5):
# 5 most similar images found
plt.subplot(3,5,6+ms)
im_id = sim_to_index[-ms-1][1]
im_sim = sim_to_index[-ms-1][0]
img = np.reshape(X[im_id],(img_hw,img_hw))
if transpose: img = img.T
plt.subplot(3, 5, 6 + ms)
im_id = sim_to_index[-ms - 1][1]
im_sim = sim_to_index[-ms - 1][0]
img = np.reshape(X[im_id], (img_hw, img_hw))
if transpose:
img = img.T
plt.imshow(img, cmap=plt.cm.gray)
plt.xlabel('sim={0:.3f}'.format(im_sim))
plt.ylabel('image #{0}'.format(im_id))
plt.xticks([]); plt.yticks([])
if ms==2: plt.title('Most similar images')
plt.xlabel("sim={0:.3f}".format(im_sim))
plt.ylabel("image #{0}".format(im_id))
plt.xticks([])
plt.yticks([])
if ms == 2:
plt.title("Most similar images")
# 5 least similar images found
plt.subplot(3,5,11+ms)
plt.subplot(3, 5, 11 + ms)
im_id = sim_to_index[ms][1]
im_sim = sim_to_index[ms][0]
img = np.reshape(X[im_id],(img_hw,img_hw))
if transpose: img = img.T
img = np.reshape(X[im_id], (img_hw, img_hw))
if transpose:
img = img.T
plt.imshow(img, cmap=plt.cm.gray)
plt.xlabel('sim={0:.3f}'.format(im_sim))
plt.ylabel('image #{0}'.format(im_id))
plt.xticks([]); plt.yticks([])
if ms==2: plt.title('Least similar images')
plt.xlabel("sim={0:.3f}".format(im_sim))
plt.ylabel("image #{0}".format(im_id))
plt.xticks([])
plt.yticks([])
if ms == 2:
plt.title("Least similar images")
plt.show()
print('Ran Exercise 2.2.1')
print("Ran Exercise 2.2.1")
# exercise 3.2.2
# exercise 2.2.2
import numpy as np
......
# exercise 3.1.4
# (requires data structures from ex. 2.2.1 and 2.2.3)
# (requires data structures from ex. 3.1.1)
from ex3_1_1 import *
from matplotlib.pyplot import figure, legend, plot, show, title, xlabel, ylabel
from scipy.linalg import svd
......
# exercise 3.1.5
# (requires data structures from ex. 2.2.1)
# (requires data structures from ex. 3.1.1)
import matplotlib.pyplot as plt
from ex3_1_1 import *
from scipy.linalg import svd
......
......@@ -28,5 +28,3 @@ plot(X, ".")
subplot(1, 3, 3)
hist(X, bins=nbins)
show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment