Skip to content
Snippets Groups Projects
Commit cf46fb55 authored by bjje's avatar bjje
Browse files

Minor bug fixes

parent 822fecb6
No related branches found
No related tags found
No related merge requests found
"""
This is a helper function which can help you debug the Python installation
v20240125
"""
import os
import sklearn
......@@ -11,14 +14,20 @@ print('------------------------------------------------------------------')
print('Path of this file {}'.format(os.path.abspath(__file__)))
print('Current working directory {}.'.format(pathlib.Path().resolve()))
print('')
print('The numpy version is{}.'.format(np.__version__))
print('The numpy version is {}.'.format(np.__version__))
print('The scikit-learn version is {}.'.format(sklearn.__version__))
print('The Torch version is{}.'.format(torch.__version__))
print('The torch version is{}.'.format(torch.__version__))
"""
Check that the course specific tools can be imported
"""
import dtuimldmtools
print('The dtuimldmtools package {}.'.format(dtuimldmtools))
"""
Check that pandas can be imported (use in ex1)
"""
import pandas
print('The panda package {}.'.format(pandas.__version__))
print('------------------------------------------------------------------')
......@@ -82,6 +82,8 @@ plt.title("Iris regression problem")
plt.plot(X_r[:, i], y_r, "o")
plt.xlabel(attributeNames_r[i])
plt.ylabel(targetName_r)
plt.show()
# Consider if you see a relationship between the predictor variable on the
# x-axis (the variable from X) and the target variable on the y-axis (the
# variable y). Could you draw a straight line through the data points for
......@@ -89,3 +91,4 @@ plt.ylabel(targetName_r)
# Note that, when i is 3, 4, or 5, the x-axis is based on a binary
# variable, in which case a scatter plot is not as such the best option for
# visulizing the information.
## exercise 1.5.5
import importlib_resources
import matplotlib.pyplot as plt
import numpy as np
......@@ -8,11 +9,12 @@ import pandas as pd
# We start by defining the path to the file that we're we need to load.
# Upon inspection, we saw that the messy_data.data was infact a file in the
# format of a CSV-file with a ".data" extention instead.
file_path = "../data/messy_data/messy_data.data"
filename = importlib_resources.files("dtuimldmtools").joinpath("data/messy_data/messy_data.data")
# First of we simply read the file in using readtable, however, we need to
# tell the function that the file is tab-seperated. We also need to specify
# that the header is in the second row:
messy_data = pd.read_csv(file_path, sep="\t", header=1)
messy_data = pd.read_csv(filename, sep="\t", header=1)
# We also need to remove the added header line in the .data file which seems
# to have included a shortend form the variables (check messy_data.head()):
messy_data = messy_data.drop(messy_data.index[0])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment