Newer
Older
import sys
import math
import numpy as np
# For smoothing the path
from scipy.signal import savgol_filter
from PyQt5.QtWidgets import (
QApplication, QMainWindow, QGraphicsView, QGraphicsScene,
QGraphicsEllipseItem, QGraphicsPixmapItem, QPushButton,
QHBoxLayout, QVBoxLayout, QWidget, QFileDialog, QGraphicsTextItem,
QSlider, QLabel
)
from PyQt5.QtGui import QPixmap, QPen, QBrush, QColor, QFont
from PyQt5.QtCore import Qt, QRectF, QSize
from live_wire import compute_cost_image, find_path
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# ------------------------------------------------------------------------
# A pan & zoom QGraphicsView
# ------------------------------------------------------------------------
class PanZoomGraphicsView(QGraphicsView):
def __init__(self, parent=None):
super().__init__(parent)
self.setDragMode(QGraphicsView.NoDrag) # We'll handle panning manually
self.setTransformationAnchor(QGraphicsView.AnchorUnderMouse)
self._panning = False
self._pan_start = None
def wheelEvent(self, event):
"""
Zoom in/out with mouse wheel.
"""
zoom_in_factor = 1.25
zoom_out_factor = 1 / zoom_in_factor
if event.angleDelta().y() > 0:
self.scale(zoom_in_factor, zoom_in_factor)
else:
self.scale(zoom_out_factor, zoom_out_factor)
event.accept()
def mousePressEvent(self, event):
"""
If left button: Start panning (unless overridden in a subclass).
"""
if event.button() == Qt.LeftButton:
self._panning = True
self._pan_start = event.pos()
self.setCursor(Qt.ClosedHandCursor)
super().mousePressEvent(event)
def mouseMoveEvent(self, event):
"""
If panning, translate the scene.
"""
if self._panning and self._pan_start is not None:
delta = event.pos() - self._pan_start
self._pan_start = event.pos()
self.translate(delta.x(), delta.y())
super().mouseMoveEvent(event)
def mouseReleaseEvent(self, event):
"""
End panning.
"""
if event.button() == Qt.LeftButton:
self._panning = False
self.setCursor(Qt.ArrowCursor)
super().mouseReleaseEvent(event)
# ------------------------------------------------------------------------
# A specialized PanZoomGraphicsView for the circle editor
# Only pan if user did NOT click on the draggable circle
# ------------------------------------------------------------------------
class CircleEditorGraphicsView(PanZoomGraphicsView):
def mousePressEvent(self, event):
if event.button() == Qt.LeftButton:
# Check if the user clicked on the circle item
clicked_item = self.itemAt(event.pos().x(), event.pos().y())
if clicked_item is not None:
# Walk up parent chain to see if it is our DraggableCircleItem
it = clicked_item
while it is not None and not hasattr(it, "boundingRect"):
it = it.parentItem()
from PyQt5.QtWidgets import QGraphicsEllipseItem
if isinstance(it, DraggableCircleItem):
# Let normal item-dragging occur, don't initiate panning
return QGraphicsView.mousePressEvent(self, event)
# Otherwise proceed with normal panning logic
super().mousePressEvent(event)
# ------------------------------------------------------------------------
# Draggable circle item (centered at (x, y) with radius)
# ------------------------------------------------------------------------
class DraggableCircleItem(QGraphicsEllipseItem):
def __init__(self, x, y, radius=20, color=Qt.red, parent=None):
super().__init__(0, 0, 2*radius, 2*radius, parent)
self._r = radius
pen = QPen(color)
brush = QBrush(color)
self.setPen(pen)
self.setBrush(brush)
# Enable item-based dragging
self.setFlags(QGraphicsEllipseItem.ItemIsMovable |
QGraphicsEllipseItem.ItemIsSelectable |
QGraphicsEllipseItem.ItemSendsScenePositionChanges)
# Position so that (x, y) is the center
self.setPos(x - radius, y - radius)
def set_radius(self, r):
# Keep the same center, just change radius
old_center = self.sceneBoundingRect().center()
self._r = r
self.setRect(0, 0, 2*r, 2*r)
new_center = self.sceneBoundingRect().center()
diff_x = old_center.x() - new_center.x()
diff_y = old_center.y() - new_center.y()
self.moveBy(diff_x, diff_y)
def radius(self):
return self._r
# ------------------------------------------------------------------------
# Circle editor widget with slider + done
# ------------------------------------------------------------------------
class CircleEditorWidget(QWidget):
def __init__(self, pixmap, init_radius=20, done_callback=None, parent=None):
super().__init__(parent)
self._pixmap = pixmap
self._done_callback = done_callback
self._init_radius = init_radius
layout = QVBoxLayout(self)
self.setLayout(layout)
# Use specialized CircleEditorGraphicsView
self._graphics_view = CircleEditorGraphicsView()
self._scene = QGraphicsScene(self)
self._graphics_view.setScene(self._scene)
layout.addWidget(self._graphics_view)
self._image_item = QGraphicsPixmapItem(self._pixmap)
self._scene.addItem(self._image_item)
# Put circle in center
cx = self._pixmap.width() / 2
cy = self._pixmap.height() / 2
self._circle_item = DraggableCircleItem(cx, cy, radius=self._init_radius, color=Qt.red)
self._scene.addItem(self._circle_item)
# Fit in view
self._graphics_view.setSceneRect(QRectF(self._pixmap.rect()))
self._graphics_view.fitInView(self._image_item, Qt.KeepAspectRatio)
# Bottom controls (slider + done)
bottom_layout = QHBoxLayout()
layout.addLayout(bottom_layout)
lbl = QLabel("size:")
bottom_layout.addWidget(lbl)
self._slider = QSlider(Qt.Horizontal)
self._slider.setRange(1, 200)
self._slider.setValue(self._init_radius)
bottom_layout.addWidget(self._slider)
self._btn_done = QPushButton("Done")
bottom_layout.addWidget(self._btn_done)
# Connect signals
self._slider.valueChanged.connect(self._on_slider_changed)
self._btn_done.clicked.connect(self._on_done_clicked)
def _on_slider_changed(self, value):
self._circle_item.set_radius(value)
def _on_done_clicked(self):
final_radius = self._circle_item.radius()
if self._done_callback is not None:
self._done_callback(final_radius)
def sizeHint(self):
return QSize(800, 600)
# ------------------------------------------------------------------------
# Labeled point item
# ------------------------------------------------------------------------
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
class LabeledPointItem(QGraphicsEllipseItem):
def __init__(self, x, y, label="", radius=4, color=Qt.red, removable=True, z_value=0, parent=None):
super().__init__(0, 0, 2*radius, 2*radius, parent)
self._x = x
self._y = y
self._r = radius
self._removable = removable
pen = QPen(color)
brush = QBrush(color)
self.setPen(pen)
self.setBrush(brush)
self.setZValue(z_value)
self._text_item = None
if label:
self._text_item = QGraphicsTextItem(self)
self._text_item.setPlainText(label)
self._text_item.setDefaultTextColor(QColor("black"))
font = QFont("Arial", 14)
font.setBold(True)
self._text_item.setFont(font)
self._scale_text_to_fit()
self.set_pos(x, y)
def _scale_text_to_fit(self):
if not self._text_item:
return
self._text_item.setScale(1.0)
circle_diam = 2 * self._r
raw_rect = self._text_item.boundingRect()
text_w = raw_rect.width()
text_h = raw_rect.height()
if text_w > circle_diam or text_h > circle_diam:
scale_factor = min(circle_diam / text_w, circle_diam / text_h)
self._text_item.setScale(scale_factor)
self._center_label()
def _center_label(self):
if not self._text_item:
return
ellipse_w = 2 * self._r
ellipse_h = 2 * self._r
raw_rect = self._text_item.boundingRect()
scale_factor = self._text_item.scale()
scaled_w = raw_rect.width() * scale_factor
scaled_h = raw_rect.height() * scale_factor
tx = (ellipse_w - scaled_w) * 0.5
ty = (ellipse_h - scaled_h) * 0.5
self._text_item.setPos(tx, ty)
def set_pos(self, x, y):
"""Positions the circle so its center is at (x, y)."""
self._x = x
self._y = y
self.setPos(x - self._r, y - self._r)
def get_pos(self):
return (self._x, self._y)
def distance_to(self, x_other, y_other):
return math.sqrt((self._x - x_other)**2 + (self._y - y_other)**2)
def is_removable(self):
return self._removable
# ------------------------------------------------------------------------
# The original ImageGraphicsView with pan & zoom
# ------------------------------------------------------------------------
class ImageGraphicsView(PanZoomGraphicsView):
def __init__(self, parent=None):
super().__init__(parent)
self.scene = QGraphicsScene(self)
self.setScene(self.scene)
self.image_item = QGraphicsPixmapItem()
self.scene.addItem(self.image_item)
self.point_items = [] # LabeledPointItem
self.full_path_points = [] # QGraphicsEllipseItems for path
self._full_path_xy = [] # entire path coords (smoothed)
self.dot_radius = 4
self.path_radius = 1
self._img_w = 0
self._img_h = 0
self._mouse_pressed = False
self._press_view_pos = None
self._drag_threshold = 5
self._was_dragging = False
self._dragging_idx = None
self._drag_offset = (0, 0)
self.cost_image_original = None
self.cost_image = None
# Rainbow toggle
self._rainbow_enabled = True
def set_rainbow_enabled(self, enabled: bool):
"""Enable/disable rainbow mode, then rebuild the path."""
self._rainbow_enabled = enabled
self._rebuild_full_path()
def toggle_rainbow(self):
"""Flip the rainbow mode and rebuild path."""
self._rainbow_enabled = not self._rainbow_enabled
self._rebuild_full_path()
# --------------------------------------------------------------------
# LOADING
# --------------------------------------------------------------------
def load_image(self, path):
pixmap = QPixmap(path)
if not pixmap.isNull():
self.image_item.setPixmap(pixmap)
self.setSceneRect(QRectF(pixmap.rect()))
self._img_w = pixmap.width()
self._img_h = pixmap.height()
self._clear_all_points()
self.resetTransform()
self.fitInView(self.image_item, Qt.KeepAspectRatio)
s_x, s_y = 0.15 * self._img_w, 0.5 * self._img_h
e_x, e_y = 0.85 * self._img_w, 0.5 * self._img_h
self._insert_anchor_point(-1, s_x, s_y, label="S", removable=False, z_val=100, radius=6)
self._insert_anchor_point(-1, e_x, e_y, label="E", removable=False, z_val=100, radius=6)
# --------------------------------------------------------------------
# ANCHOR POINTS
# --------------------------------------------------------------------
def _insert_anchor_point(self, idx, x, y, label="", removable=True, z_val=0, radius=4):
"""Insert anchor at index=idx (or -1 => before E). Clamps x,y to image bounds."""
x_clamped = self._clamp(x, radius, self._img_w - radius)
y_clamped = self._clamp(y, radius, self._img_h - radius)
if idx < 0:
if len(self.anchor_points) >= 2:
idx = len(self.anchor_points) - 1
else:
idx = len(self.anchor_points)
self.anchor_points.insert(idx, (x_clamped, y_clamped))
color = Qt.green if label in ("S", "E") else Qt.red
item = LabeledPointItem(x_clamped, y_clamped,
label=label, radius=radius, color=color,
removable=removable, z_value=z_val)
self.point_items.insert(idx, item)
self.scene.addItem(item)
def _add_guide_point(self, x, y):
x_clamped = self._clamp(x, self.dot_radius, self._img_w - self.dot_radius)
y_clamped = self._clamp(y, self.dot_radius, self._img_h - self.dot_radius)
if not self._full_path_xy:
self._insert_anchor_point(-1, x_clamped, y_clamped,
label="", removable=True, z_val=1, radius=self.dot_radius)
else:
self._insert_anchor_between_subpath(x_clamped, y_clamped)
self._apply_all_guide_points_to_cost()
self._rebuild_full_path()
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def _insert_anchor_between_subpath(self, x_new, y_new):
if not self._full_path_xy:
self._insert_anchor_point(-1, x_new, y_new)
return
best_idx = None
best_d2 = float('inf')
for i, (px, py) in enumerate(self._full_path_xy):
dx = px - x_new
dy = py - y_new
d2 = dx*dx + dy*dy
if d2 < best_d2:
best_d2 = d2
best_idx = i
if best_idx is None:
self._insert_anchor_point(-1, x_new, y_new)
return
def approx_equal(xa, ya, xb, yb, tol=1e-3):
return (abs(xa - xb) < tol) and (abs(ya - yb) < tol)
def is_anchor(coord):
cx, cy = coord
for (ax, ay) in self.anchor_points:
if approx_equal(ax, ay, cx, cy):
return True
return False
left_anchor_pt = None
iL = best_idx
while iL >= 0:
px, py = self._full_path_xy[iL]
if is_anchor((px, py)):
left_anchor_pt = (px, py)
break
iL -= 1
right_anchor_pt = None
iR = best_idx
while iR < len(self._full_path_xy):
px, py = self._full_path_xy[iR]
if is_anchor((px, py)):
right_anchor_pt = (px, py)
break
iR += 1
if not left_anchor_pt or not right_anchor_pt:
self._insert_anchor_point(-1, x_new, y_new)
return
if left_anchor_pt == right_anchor_pt:
self._insert_anchor_point(-1, x_new, y_new)
return
left_idx = None
right_idx = None
for i, (ax, ay) in enumerate(self.anchor_points):
if approx_equal(ax, ay, left_anchor_pt[0], left_anchor_pt[1]):
left_idx = i
if approx_equal(ax, ay, right_anchor_pt[0], right_anchor_pt[1]):
right_idx = i
if left_idx is None or right_idx is None:
self._insert_anchor_point(-1, x_new, y_new)
return
if left_idx < right_idx:
insert_idx = left_idx + 1
else:
insert_idx = right_idx + 1
self._insert_anchor_point(insert_idx, x_new, y_new, label="", removable=True,
z_val=1, radius=self.dot_radius)
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# --------------------------------------------------------------------
# COST IMAGE
# --------------------------------------------------------------------
def _revert_cost_to_original(self):
if self.cost_image_original is not None:
self.cost_image = self.cost_image_original.copy()
def _apply_all_guide_points_to_cost(self):
if self.cost_image is None:
return
for i, (ax, ay) in enumerate(self.anchor_points):
if self.point_items[i].is_removable():
self._lower_cost_in_circle(ax, ay, self.radius_cost_image)
def _lower_cost_in_circle(self, x_f, y_f, radius):
if self.cost_image is None:
return
h, w = self.cost_image.shape
row_c = int(round(y_f))
col_c = int(round(x_f))
if not (0 <= row_c < h and 0 <= col_c < w):
return
global_min = self.cost_image.min()
r_s = max(0, row_c - radius)
r_e = min(h, row_c + radius + 1)
c_s = max(0, col_c - radius)
c_e = min(w, col_c + radius + 1)
for rr in range(r_s, r_e):
for cc in range(c_s, c_e):
dist = math.sqrt((rr - row_c)**2 + (cc - col_c)**2)
if dist <= radius:
self.cost_image[rr, cc] = global_min
# --------------------------------------------------------------------
# PATH BUILDING
# --------------------------------------------------------------------
def _rebuild_full_path(self):
for item in self.full_path_points:
self.scene.removeItem(item)
self.full_path_points.clear()
if len(self.anchor_points) < 2 or self.cost_image is None:
return
big_xy = []
for i in range(len(self.anchor_points) - 1):
xB, yB = self.anchor_points[i + 1]
sub_xy = self._compute_subpath_xy(xA, yA, xB, yB)
if i == 0:
big_xy.extend(sub_xy)
else:
if len(sub_xy) > 1:
big_xy.extend(sub_xy[1:])
if len(big_xy) >= 7:
smoothed = savgol_filter(arr_xy, window_length=7, polyorder=1, axis=0)
big_xy = smoothed.tolist()
n_points = len(big_xy)
for i, (px, py) in enumerate(big_xy):
fraction = i / (n_points - 1) if n_points > 1 else 0
if self._rainbow_enabled:
color = self._rainbow_color(fraction)
else:
color = Qt.red
path_item = LabeledPointItem(px, py, label="",
radius=self.path_radius,
color=color,
removable=False,
z_value=0)
self.full_path_points.append(path_item)
self.scene.addItem(path_item)
for p_item in self.point_items:
if p_item._text_item:
p_item.setZValue(100)
def _compute_subpath_xy(self, xA, yA, xB, yB):
if self.cost_image is None:
return []
h, w = self.cost_image.shape
rA, cA = int(round(yA)), int(round(xA))
rB, cB = int(round(yB)), int(round(xB))
rA = max(0, min(rA, h - 1))
cA = max(0, min(cA, w - 1))
rB = max(0, min(rB, h - 1))
cB = max(0, min(cB, w - 1))
try:
path_rc = find_path(self.cost_image, [(rA, cA), (rB, cB)])
except ValueError as e:
print("Error in find_path:", e)
return []
return [(c, r) for (r, c) in path_rc]
def _rainbow_color(self, fraction):
saturation = 255
value = 255
return QColor.fromHsv(hue, saturation, value)
# --------------------------------------------------------------------
# MOUSE EVENTS (with pan & zoom from PanZoomGraphicsView)
# --------------------------------------------------------------------
def mousePressEvent(self, event):
if event.button() == Qt.LeftButton:
self._mouse_pressed = True
self._was_dragging = False
self._press_view_pos = event.pos()
idx = self._find_item_near(event.pos(), threshold=10)
if idx is not None:
self._dragging_idx = idx
self._drag_counter = 0
scene_pos = self.mapToScene(event.pos())
px, py = self.point_items[idx].get_pos()
self._drag_offset = (scene_pos.x() - px, scene_pos.y() - py)
return
elif event.button() == Qt.RightButton:
self._remove_point_by_click(event.pos())
super().mousePressEvent(event)
def mouseMoveEvent(self, event):
if self._dragging_idx is not None:
scene_pos = self.mapToScene(event.pos())
x_new = scene_pos.x() - self._drag_offset[0]
y_new = scene_pos.y() - self._drag_offset[1]
r = self.point_items[self._dragging_idx]._r
x_clamped = self._clamp(x_new, r, self._img_w - r)
y_clamped = self._clamp(y_new, r, self._img_h - r)
self.point_items[self._dragging_idx].set_pos(x_clamped, y_clamped)
self._drag_counter += 1
if self._drag_counter >= 4:
self._drag_counter = 0
self._revert_cost_to_original()
self._apply_all_guide_points_to_cost()
self.anchor_points[self._dragging_idx] = (x_clamped, y_clamped)
self._rebuild_full_path()
else:
if self._mouse_pressed and (event.buttons() & Qt.LeftButton):
dist = (event.pos() - self._press_view_pos).manhattanLength()
if dist > self._drag_threshold:
self._was_dragging = True
def mouseReleaseEvent(self, event):
super().mouseReleaseEvent(event)
if event.button() == Qt.LeftButton and self._mouse_pressed:
self._mouse_pressed = False
if self._dragging_idx is not None:
idx = self._dragging_idx
self._dragging_idx = None
self._drag_offset = (0, 0)
newX, newY = self.point_items[idx].get_pos()
self.anchor_points[idx] = (newX, newY)
self._revert_cost_to_original()
self._apply_all_guide_points_to_cost()
self._rebuild_full_path()
else:
if not self._was_dragging:
scene_pos = self.mapToScene(event.pos())
x, y = scene_pos.x(), scene_pos.y()
self._add_guide_point(x, y)
self._was_dragging = False
def _remove_point_by_click(self, view_pos):
idx = self._find_item_near(view_pos, threshold=10)
if idx is None:
return
if not self.point_items[idx].is_removable():
return
self.scene.removeItem(self.point_items[idx])
self.point_items.pop(idx)
self.anchor_points.pop(idx)
self._revert_cost_to_original()
self._apply_all_guide_points_to_cost()
self._rebuild_full_path()
def _find_item_near(self, view_pos, threshold=10):
scene_pos = self.mapToScene(view_pos)
x_click, y_click = scene_pos.x(), scene_pos.y()
for i, itm in enumerate(self.point_items):
d = itm.distance_to(x_click, y_click)
if d < min_dist:
min_dist = d
closest_idx = i
if closest_idx is not None and min_dist <= threshold:
return closest_idx
return None
# --------------------------------------------------------------------
# UTILS
# --------------------------------------------------------------------
def _clamp(self, val, mn, mx):
return max(mn, min(val, mx))
def _clear_all_points(self):
for it in self.point_items:
self.scene.removeItem(it)
self.point_items.clear()
self.anchor_points.clear()
for p in self.full_path_points:
self.scene.removeItem(p)
self.full_path_points.clear()
def clear_guide_points(self):
i = 0
while i < len(self.anchor_points):
if self.point_items[i].is_removable():
self.scene.removeItem(self.point_items[i])
del self.point_items[i]
del self.anchor_points[i]
else:
i += 1
for it in self.full_path_points:
self.scene.removeItem(it)
self._revert_cost_to_original()
self._apply_all_guide_points_to_cost()
self._rebuild_full_path()
def get_full_path_xy(self):
return self._full_path_xy
# ------------------------------------------------------------------------
# Main Window
# ------------------------------------------------------------------------
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Test GUI")
self._last_loaded_pixmap = None
self._circle_radius_for_later_use = 0
# Original main widget
self._main_widget = QWidget()
self._main_layout = QVBoxLayout(self._main_widget)
self._main_layout.addWidget(self.image_view)
btn_layout = QHBoxLayout()
self.btn_load_image = QPushButton("Load Image")
self.btn_load_image.clicked.connect(self.load_image)
btn_layout.addWidget(self.btn_load_image)
self.btn_export_path = QPushButton("Export Path")
self.btn_export_path.clicked.connect(self.export_path)
btn_layout.addWidget(self.btn_export_path)
self.btn_clear_points = QPushButton("Clear Points")
self.btn_clear_points.clicked.connect(self.clear_points)
btn_layout.addWidget(self.btn_clear_points)
self.btn_toggle_rainbow = QPushButton("Toggle Rainbow")
self.btn_toggle_rainbow.clicked.connect(self.toggle_rainbow)
btn_layout.addWidget(self.btn_toggle_rainbow)
# New circle editor button
self.btn_open_editor = QPushButton("Open Circle Editor")
self.btn_open_editor.clicked.connect(self.open_circle_editor)
btn_layout.addWidget(self.btn_open_editor)
self._main_layout.addLayout(btn_layout)
self.setCentralWidget(self._main_widget)
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
# We keep references for old/new
self._old_central_widget = None
self._editor = None
def open_circle_editor(self):
"""Removes the current central widget, replaces with circle editor."""
if not self._last_loaded_pixmap:
print("No image loaded yet! Cannot open circle editor.")
return
# Step 1: take the old widget out of QMainWindow ownership
old_widget = self.takeCentralWidget()
self._old_central_widget = old_widget
# Step 2: create the editor
init_radius = 20
editor = CircleEditorWidget(
pixmap=self._last_loaded_pixmap,
init_radius=init_radius,
done_callback=self._on_circle_editor_done
)
self._editor = editor
# Step 3: set the new editor as the central widget
self.setCentralWidget(editor)
def _on_circle_editor_done(self, final_radius):
self._circle_radius_for_later_use = final_radius
print(f"Circle Editor done. Radius = {final_radius}")
# Take the editor out
editor_widget = self.takeCentralWidget()
if editor_widget is not None:
editor_widget.setParent(None)
# Put back the old widget
if self._old_central_widget is not None:
self.setCentralWidget(self._old_central_widget)
self._old_central_widget = None
# We can delete the editor if we like
if self._editor is not None:
self._editor.deleteLater()
self._editor = None
# --------------------------------------------------------------------
# Existing Functions
# --------------------------------------------------------------------
def toggle_rainbow(self):
self.image_view.toggle_rainbow()
def load_image(self):
options = QFileDialog.Options()
file_path, _ = QFileDialog.getOpenFileName(
self, "Open Image", "",
"Images (*.png *.jpg *.jpeg *.bmp *.tif)",
options=options
)
if file_path:
self.image_view.load_image(file_path)
cost_img = compute_cost_image(file_path)
self.image_view.cost_image_original = cost_img
self.image_view.cost_image = cost_img.copy()
# Store a pixmap to reuse
pm = QPixmap(file_path)
if not pm.isNull():
self._last_loaded_pixmap = pm
def export_path(self):
full_xy = self.image_view.get_full_path_xy()
if not full_xy:
print("No path to export.")
options = QFileDialog.Options()
file_path, _ = QFileDialog.getSaveFileName(
"NumPy Files (*.npy);;All Files (*)",
options=options
)
if file_path:
arr = np.array(full_xy)
np.save(file_path, arr)
print(f"Exported path with {len(arr)} points to {file_path}")
def clear_points(self):
self.image_view.clear_guide_points()
def closeEvent(self, event):
super().closeEvent(event)
def main():
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
if __name__ == "__main__":
main()