Skip to content
Snippets Groups Projects
Commit 1c77de04 authored by Christian's avatar Christian
Browse files

Bug fixes and added ability to use 'centerline' method instead

parent affd43e3
No related branches found
No related tags found
No related merge requests found
......@@ -100,7 +100,7 @@ class ImageGraphicsView(QGraphicsView):
self.editor_mode = False
self.dot_radius = 4
self.path_radius = 1
self.radius_something = 3 # cost-lowering radius
self.radius_cost_image = 2 # cost-lowering radius
self._img_w = 0
self._img_h = 0
......@@ -198,7 +198,7 @@ class ImageGraphicsView(QGraphicsView):
return
for i, (ax, ay) in enumerate(self.anchor_points):
if self.point_items[i].is_removable():
self._lower_cost_in_circle(ax, ay, self.radius_something)
self._lower_cost_in_circle(ax, ay, self.radius_cost_image)
def _lower_cost_in_circle(self, x_f, y_f, radius):
"""Set cost_image row,col in circle of radius -> global min."""
......
......@@ -6,9 +6,10 @@ from skimage import exposure
from skimage.filters import gaussian
from skimage.feature import canny
from skimage.graph import route_through_array
from scipy.signal import convolve2d
#### Helper functions ####
'''
### Canny Edge cost image
def compute_cost_image(path, sigma=3):
### Load image
......@@ -28,6 +29,49 @@ def compute_cost_image(path, sigma=3):
return cost_img
def find_path(cost_image, points):
if len(points) != 2:
raise ValueError("Points should be a list of 2 points: seed and target.")
seed_rc, target_rc = points
path_rc, cost = route_through_array(
cost_image,
start=seed_rc,
end=target_rc,
fully_connected=True
)
return path_rc
'''
### Disk live wire cost image
def compute_cost_image(path, sigma=3, disk_size=15):
### Load image
image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# Apply histogram equalization
image_contrasted = exposure.equalize_adapthist(image, clip_limit=0.01)
# Apply smoothing
smoothed_img = gaussian(image_contrasted, sigma=sigma)
# Apply Canny edge detection
canny_img = canny(smoothed_img)
# Do disk thing
binary_img = canny_img
k_size = 17
kernel = circle_edge_kernel(k_size=disk_size)
convolved = convolve2d(binary_img, kernel, mode='same', boundary='fill')
# Create cost image
cost_img = (convolved.max() - convolved)**4 # Invert edges: higher cost where edges are stronger
return cost_img
def find_path(cost_image, points):
......@@ -46,8 +90,50 @@ def find_path(cost_image, points):
return path_rc
def circle_edge_kernel(k_size=5, radius=None):
"""
Create a k_size x k_size array whose values increase linearly
from 0 at the center to 1 at the circle boundary (radius).
Parameters
----------
k_size : int
The size (width and height) of the kernel array.
radius : float, optional
The circle's radius. By default, set to (k_size-1)/2.
Returns
-------
kernel : 2D numpy array of shape (k_size, k_size)
The circle-edge-weighted kernel.
"""
if radius is None:
# By default, let the radius be half the kernel size
radius = (k_size - 1) / 2
# Create an empty kernel
kernel = np.zeros((k_size, k_size), dtype=float)
# Coordinates of the center
center = radius # same as (k_size-1)/2 if radius is default
# Fill the kernel
for y in range(k_size):
for x in range(k_size):
dist = np.sqrt((x - center)**2 + (y - center)**2)
if dist <= radius:
# Weight = distance / radius => 0 at center, 1 at boundary
kernel[y, x] = dist / radius
return kernel
# Other functions
def downscale(img, points, scale_percent):
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment