Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pt2d
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
QIM
Tools
pt2d
Commits
76074df6
Commit
76074df6
authored
5 months ago
by
s224389
Browse files
Options
Downloads
Patches
Plain Diff
Delete live_wire.py
parent
ee0c9c68
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
live_wire.py
+0
-135
0 additions, 135 deletions
live_wire.py
with
0 additions
and
135 deletions
live_wire.py
deleted
100644 → 0
+
0
−
135
View file @
ee0c9c68
import
cv2
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
skimage
import
exposure
from
skimage.filters
import
gaussian
from
skimage.feature
import
canny
from
skimage.graph
import
route_through_array
from
scipy.signal
import
convolve2d
### Disk live wire cost image
def
compute_disk_size
(
user_radius
,
upscale_factor
=
1.2
):
return
int
(
np
.
ceil
(
upscale_factor
*
2
*
user_radius
+
1
)
//
2
*
2
+
1
)
def
load_image
(
path
):
return
cv2
.
imread
(
path
,
cv2
.
IMREAD_GRAYSCALE
)
def
preprocess_image
(
image
,
sigma
=
3
,
clip_limit
=
0.01
):
# Apply histogram equalization
image_contrasted
=
exposure
.
equalize_adapthist
(
image
,
clip_limit
=
clip_limit
)
# Apply smoothing
smoothed_img
=
gaussian
(
image_contrasted
,
sigma
=
sigma
)
return
smoothed_img
def
compute_cost_image
(
path
,
user_radius
,
sigma
=
3
,
clip_limit
=
0.01
):
disk_size
=
compute_disk_size
(
user_radius
)
### Load image
image
=
load_image
(
path
)
# Apply smoothing
smoothed_img
=
preprocess_image
(
image
,
sigma
=
sigma
,
clip_limit
=
clip_limit
)
# Apply Canny edge detection
canny_img
=
canny
(
smoothed_img
)
# Do disk thing
binary_img
=
canny_img
kernel
=
circle_edge_kernel
(
k_size
=
disk_size
)
convolved
=
convolve2d
(
binary_img
,
kernel
,
mode
=
'
same
'
,
boundary
=
'
fill
'
)
# Create cost image
cost_img
=
(
convolved
.
max
()
-
convolved
)
**
4
# Invert edges: higher cost where edges are stronger
return
cost_img
def
find_path
(
cost_image
,
points
):
if
len
(
points
)
!=
2
:
raise
ValueError
(
"
Points should be a list of 2 points: seed and target.
"
)
seed_rc
,
target_rc
=
points
path_rc
,
cost
=
route_through_array
(
cost_image
,
start
=
seed_rc
,
end
=
target_rc
,
fully_connected
=
True
)
return
path_rc
def
circle_edge_kernel
(
k_size
=
5
,
radius
=
None
):
"""
Create a k_size x k_size array whose values increase linearly
from 0 at the center to 1 at the circle boundary (radius).
Parameters
----------
k_size : int
The size (width and height) of the kernel array.
radius : float, optional
The circle
'
s radius. By default, set to (k_size-1)/2.
Returns
-------
kernel : 2D numpy array of shape (k_size, k_size)
The circle-edge-weighted kernel.
"""
if
radius
is
None
:
# By default, let the radius be half the kernel size
radius
=
(
k_size
-
1
)
/
2
# Create an empty kernel
kernel
=
np
.
zeros
((
k_size
,
k_size
),
dtype
=
float
)
# Coordinates of the center
center
=
radius
# same as (k_size-1)/2 if radius is default
# Fill the kernel
for
y
in
range
(
k_size
):
for
x
in
range
(
k_size
):
dist
=
np
.
sqrt
((
x
-
center
)
**
2
+
(
y
-
center
)
**
2
)
if
dist
<=
radius
:
# Weight = distance / radius => 0 at center, 1 at boundary
kernel
[
y
,
x
]
=
dist
/
radius
return
kernel
# Other functions (to be implemented?)
def
downscale
(
img
,
points
,
scale_percent
):
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if
scale_percent
==
100
:
return
img
,
(
tuple
(
points
[
0
]),
tuple
(
points
[
1
]))
else
:
# Compute new dimensions
width
=
int
(
img
.
shape
[
1
]
*
scale_percent
/
100
)
height
=
int
(
img
.
shape
[
0
]
*
scale_percent
/
100
)
new_dimensions
=
(
width
,
height
)
# Downsample
downsampled_img
=
cv2
.
resize
(
img
,
new_dimensions
,
interpolation
=
cv2
.
INTER_AREA
)
# Scaling factors
scale_x
=
width
/
img
.
shape
[
1
]
scale_y
=
height
/
img
.
shape
[
0
]
# Scale the points (x, y)
seed_xy
=
tuple
(
points
[
0
])
target_xy
=
tuple
(
points
[
1
])
scaled_seed_xy
=
(
int
(
seed_xy
[
0
]
*
scale_x
),
int
(
seed_xy
[
1
]
*
scale_y
))
scaled_target_xy
=
(
int
(
target_xy
[
0
]
*
scale_x
),
int
(
target_xy
[
1
]
*
scale_y
))
return
downsampled_img
,
(
scaled_seed_xy
,
scaled_target_xy
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment