Skip to content
Snippets Groups Projects
Commit 7d550759 authored by Christian's avatar Christian
Browse files

Added live_wire implementation

parent daa7e7e0
No related branches found
No related tags found
1 merge request!3Live wire to be implemented into GUI
import time
import cv2
import numpy as np
import heapq
import matplotlib.pyplot as plt
from scipy.ndimage import convolve
from skimage.filters import gaussian
from skimage.feature import canny
#### Helper functions ####
def neighbors_8(x, y, width, height):
"""Return the 8-connected neighbors of (x, y)."""
for nx in (x-1, x, x+1):
for ny in (y-1, y, y+1):
if 0 <= nx < width and 0 <= ny < height:
if not (nx == x and ny == y):
yield nx, ny
def dijkstra(cost_img, seed):
"""
Dijkstra's algorithm on a 2D grid, using cost_img as the per-pixel cost.
Args:
cost_img (np.array): 2D array of costs (float).
seed (tuple): (x, y) starting coordinate.
Returns:
dist (np.float32): array of minimal cumulative cost from seed to each pixel.
parent (np.int32): array storing predecessor of each pixel for path reconstruction.
"""
height, width = cost_img.shape
# Initialize dist and parent
dist = np.full((height, width), np.inf, dtype=np.float32)
dist[seed[1], seed[0]] = 0.0
parent = -1 * np.ones((height, width, 2), dtype=np.int32)
visited = np.zeros((height, width), dtype=bool)
pq = [(0.0, seed[0], seed[1])] # (distance, x, y)
while pq:
curr_dist, cx, cy = heapq.heappop(pq)
if visited[cy, cx]:
continue
visited[cy, cx] = True
for nx, ny in neighbors_8(cx, cy, width, height):
if visited[ny, nx]:
continue
# We can take an average or sum—here, let's just sum the cost
move_cost = 0.5 * (cost_img[cy, cx] + cost_img[ny, nx])
ndist = curr_dist + move_cost
if ndist < dist[ny, nx]:
dist[ny, nx] = ndist
parent[ny, nx] = (cx, cy)
heapq.heappush(pq, (ndist, nx, ny))
return dist, parent
def backtrack_path(parent, start, end):
"""
Reconstruct path from 'end' back to 'start' using 'parent' array.
Args:
parent (np.array): shape (H, W, 2), storing (px, py) for each pixel.
start (tuple): (x, y) start coordinate.
end (tuple): (x, y) end coordinate.
Returns:
path (list of (x, y)): from start to end inclusive.
"""
path = []
current = end
while True:
path.append(current)
if current == start:
break
px, py = parent[current[1], current[0]]
current = (px, py)
path.reverse()
return path
def compute_cost(image, sigma=3.0, epsilon=1e-5):
smoothed_img = gaussian(image, sigma=sigma)
canny_img = canny(smoothed_img)
cost_img = 1 / (canny_img + epsilon)
return cost_img, canny_img
def load_image(path, type):
# Load image
if type == 'gray':
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if img is None:
raise FileNotFoundError(f"Could not read {path}")
elif type == 'color':
img = cv2.imread(path, cv2.IMREAD_COLOR)
if img is None:
raise FileNotFoundError(f"Could not read {path}")
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
raise ValueError("type must be 'gray' or 'color'")
return img
def downscale(img, points, scale_percent):
if scale_percent == 100:
return img, (tuple(points[0]), tuple(points[1]))
else:
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
new_dimensions = (width, height)
# Downsample the image
downsampled_img = cv2.resize(img, new_dimensions, interpolation=cv2.INTER_AREA)
### SCALE POINTS
# Original image dimensions
original_width = img.shape[1]
original_height = img.shape[0]
# Downsampled image dimensions
downsampled_width = width
downsampled_height = height
# Scaling factors
scale_x = downsampled_width / original_width
scale_y = downsampled_height / original_height
# Original points
seed_xy = tuple(points[0])
target_xy = tuple(points[1])
# Scale the points
scaled_seed_xy = (int(seed_xy[0] * scale_x), int(seed_xy[1] * scale_y))
scaled_target_xy = (int(target_xy[0] * scale_x), int(target_xy[1] * scale_y))
return downsampled_img, (scaled_seed_xy, scaled_target_xy)
# Define the following
image_path = './tests/slice_60_volQ.png'
image_type = 'gray' # 'gray' or 'color'
downscale_factor = 100 # % of original size wanted
points_path = './tests/LiveWireEndPoints.npy'
# Load image
image = load_image(image_path, image_type)
# Load points
points = np.int0(np.round(np.load(points_path)))
# Downscale image and points
scaled_image, scaled_points = downscale(image, points, downscale_factor)
seed, target = scaled_points
# Compute cost image
cost_image, canny_img = compute_cost(scaled_image)
# Find path and time it
start_time = time.time()
dist, parent = dijkstra(cost_image, seed)
path = backtrack_path(parent, seed, target)
end_time = time.time()
print(f"Elapsed time for pathfinding: {end_time - start_time:.3f} seconds")
color_img = cv2.cvtColor(scaled_image, cv2.COLOR_GRAY2BGR)
for (x, y) in path:
color_img[y, x] = (0, 0, 255) # red (color of path)
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.title("Cost Image")
plt.imshow(canny_img, cmap='gray')
plt.subplot(1,2,2)
plt.title("Path from Seed to Target")
plt.imshow(color_img[..., ::-1]) # BGR->RGB for plotting
plt.show()
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment