Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pt2d
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
QIM
Tools
pt2d
Commits
fd71c9a4
Commit
fd71c9a4
authored
3 months ago
by
Christian
Browse files
Options
Downloads
Patches
Plain Diff
Added method using sato and kernel for centerline extraction
parent
14451d92
No related branches found
No related tags found
1 merge request
!3
Live wire to be implemented into GUI
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
sato_test.py
+142
-0
142 additions, 0 deletions
sato_test.py
with
142 additions
and
0 deletions
sato_test.py
0 → 100644
+
142
−
0
View file @
fd71c9a4
import
time
import
cv2
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
skimage.morphology
import
skeletonize
from
skimage.filters
import
gaussian
,
sato
from
skimage.feature
import
canny
from
skimage.graph
import
route_through_array
#### Helper functions ####
def
load_image
(
path
,
type
):
"""
Load an image in either gray or color mode (then convert color to gray).
"""
if
type
==
'
gray
'
:
img
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_GRAYSCALE
)
if
img
is
None
:
raise
FileNotFoundError
(
f
"
Could not read
{
path
}
"
)
elif
type
==
'
color
'
:
img
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_COLOR
)
if
img
is
None
:
raise
FileNotFoundError
(
f
"
Could not read
{
path
}
"
)
else
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
else
:
raise
ValueError
(
"
type must be
'
gray
'
or
'
color
'"
)
return
img
def
downscale
(
img
,
points
,
scale_percent
):
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if
scale_percent
==
100
:
return
img
,
(
tuple
(
points
[
0
]),
tuple
(
points
[
1
]))
else
:
# Compute new dimensions
width
=
int
(
img
.
shape
[
1
]
*
scale_percent
/
100
)
height
=
int
(
img
.
shape
[
0
]
*
scale_percent
/
100
)
new_dimensions
=
(
width
,
height
)
# Downsample
downsampled_img
=
cv2
.
resize
(
img
,
new_dimensions
,
interpolation
=
cv2
.
INTER_AREA
)
# Scaling factors
scale_x
=
width
/
img
.
shape
[
1
]
scale_y
=
height
/
img
.
shape
[
0
]
# Scale the points (x, y)
seed_xy
=
tuple
(
points
[
0
])
target_xy
=
tuple
(
points
[
1
])
scaled_seed_xy
=
(
int
(
seed_xy
[
0
]
*
scale_x
),
int
(
seed_xy
[
1
]
*
scale_y
))
scaled_target_xy
=
(
int
(
target_xy
[
0
]
*
scale_x
),
int
(
target_xy
[
1
]
*
scale_y
))
return
downsampled_img
,
(
scaled_seed_xy
,
scaled_target_xy
)
## NO LONGER INVERSE (NOT 1/...)
def
compute_cost
(
image
,
sigma
=
1.0
,
epsilon
=
1e-1
):
"""
Smooth the image, run Canny edge detection, then invert the edge map into a cost image.
"""
smoothed_img
=
gaussian
(
image
,
sigma
=
sigma
)
canny_img
=
sato
(
smoothed_img
)
canny_thresh
=
canny_img
>
0.08
skeleton
=
skeletonize
(
canny_thresh
)
cost_img
=
1
/
(
skeleton
+
epsilon
)
# Invert edges: higher cost where edges are stronger
return
cost_img
,
skeleton
def
backtrack_pixels_on_image
(
img_color
,
path_coords
,
bgr_color
=
(
0
,
0
,
255
)):
"""
Color the path on the (already converted BGR) image in the specified color.
`path_coords` should be a list of (row, col) or (y, x).
"""
for
(
row
,
col
)
in
path_coords
:
img_color
[
row
,
col
]
=
bgr_color
return
img_color
#### Main Script ####
def
main
():
# Define input parameters
image_path
=
'
./tests/slice_60_volQ.png
'
image_type
=
'
gray
'
# 'gray' or 'color'
downscale_factor
=
100
# % of original size
points_path
=
'
./tests/LiveWireEndPoints.npy
'
# Load image
image
=
load_image
(
image_path
,
image_type
)
# Load seed and target points
points
=
np
.
int0
(
np
.
round
(
np
.
load
(
points_path
)))
# shape: (2, 2), i.e. [[x_seed, y_seed], [x_target, y_target]]
# Downscale image and points
scaled_image
,
scaled_points
=
downscale
(
image
,
points
,
downscale_factor
)
seed
,
target
=
scaled_points
# Each is (x, y)
# Convert to row,col for scikit-image (which uses (row, col) = (y, x))
seed_rc
=
(
seed
[
1
],
seed
[
0
])
target_rc
=
(
target
[
1
],
target
[
0
])
# Compute cost image
cost_image
,
canny_img
=
compute_cost
(
scaled_image
)
# Find path using route_through_array
# route_through_array expects: route_through_array(image, start, end, fully_connected=True/False)
start_time
=
time
.
time
()
path_rc
,
cost
=
route_through_array
(
cost_image
,
start
=
seed_rc
,
end
=
target_rc
,
fully_connected
=
True
)
end_time
=
time
.
time
()
print
(
f
"
Elapsed time for pathfinding:
{
end_time
-
start_time
:
.
3
f
}
seconds
"
)
# Convert single-channel image to BGR for coloring
color_img
=
cv2
.
cvtColor
(
scaled_image
,
cv2
.
COLOR_GRAY2BGR
)
# Draw path. `path_rc` is a list of (row, col).
# If you want to mark it in red, do (0,0,255) because OpenCV uses BGR format.
color_img
=
backtrack_pixels_on_image
(
color_img
,
path_rc
,
bgr_color
=
(
0
,
0
,
255
))
# Display results
plt
.
figure
(
figsize
=
(
20
,
8
))
plt
.
subplot
(
1
,
2
,
1
)
plt
.
title
(
"
Canny Edges
"
)
plt
.
imshow
(
canny_img
,
cmap
=
'
gray
'
)
plt
.
subplot
(
1
,
2
,
2
)
plt
.
title
(
"
Path from Seed to Target
"
)
# Convert BGR->RGB for pyplot
plt
.
imshow
(
color_img
[...,
::
-
1
])
plt
.
show
()
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment