Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pt2d
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
QIM
Tools
pt2d
Merge requests
!3
Live wire to be implemented into GUI
Code
Review changes
Check out branch
Open in Workspace
Download
Patches
Plain diff
Expand sidebar
Merged
Live wire to be implemented into GUI
live_wire
into
GUI
Overview
0
Commits
10
Pipelines
0
Changes
1
Merged
s224389
requested to merge
live_wire
into
GUI
5 months ago
Overview
0
Commits
10
Pipelines
0
Changes
1
0
0
Merge request reports
Viewing commit
5d292d48
Prev
Next
Show latest version
1 file
+
87
−
137
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
5d292d48
optimized live_wire by a factor of 100
· 5d292d48
Christian
authored
5 months ago
live_wire.py
+
87
−
137
View file @ 5d292d48
Edit in single-file editor
Open in Web IDE
Show full file
import
time
import
cv2
import
numpy
as
np
import
heapq
import
matplotlib.pyplot
as
plt
from
scipy.ndimage
import
convolve
from
skimage.filters
import
gaussian
from
skimage.feature
import
canny
from
skimage.graph
import
route_through_array
#### Helper functions ####
def
neighbors_8
(
x
,
y
,
width
,
height
):
"""
Return the 8-connected neighbors of (x, y).
"""
for
nx
in
(
x
-
1
,
x
,
x
+
1
):
for
ny
in
(
y
-
1
,
y
,
y
+
1
):
if
0
<=
nx
<
width
and
0
<=
ny
<
height
:
if
not
(
nx
==
x
and
ny
==
y
):
yield
nx
,
ny
def
dijkstra
(
cost_img
,
seed
):
"""
Dijkstra
'
s algorithm on a 2D grid, using cost_img as the per-pixel cost.
Args:
cost_img (np.array): 2D array of costs (float).
seed (tuple): (x, y) starting coordinate.
Returns:
dist (np.float32): array of minimal cumulative cost from seed to each pixel.
parent (np.int32): array storing predecessor of each pixel for path reconstruction.
"""
height
,
width
=
cost_img
.
shape
# Initialize dist and parent
dist
=
np
.
full
((
height
,
width
),
np
.
inf
,
dtype
=
np
.
float32
)
dist
[
seed
[
1
],
seed
[
0
]]
=
0.0
parent
=
-
1
*
np
.
ones
((
height
,
width
,
2
),
dtype
=
np
.
int32
)
visited
=
np
.
zeros
((
height
,
width
),
dtype
=
bool
)
pq
=
[(
0.0
,
seed
[
0
],
seed
[
1
])]
# (distance, x, y)
while
pq
:
curr_dist
,
cx
,
cy
=
heapq
.
heappop
(
pq
)
if
visited
[
cy
,
cx
]:
continue
visited
[
cy
,
cx
]
=
True
for
nx
,
ny
in
neighbors_8
(
cx
,
cy
,
width
,
height
):
if
visited
[
ny
,
nx
]:
continue
# We can take an average or sum—here, let's just sum the cost
move_cost
=
0.5
*
(
cost_img
[
cy
,
cx
]
+
cost_img
[
ny
,
nx
])
ndist
=
curr_dist
+
move_cost
if
ndist
<
dist
[
ny
,
nx
]:
dist
[
ny
,
nx
]
=
ndist
parent
[
ny
,
nx
]
=
(
cx
,
cy
)
heapq
.
heappush
(
pq
,
(
ndist
,
nx
,
ny
))
return
dist
,
parent
def
backtrack_path
(
parent
,
start
,
end
):
def
load_image
(
path
,
type
):
"""
Reconstruct path from
'
end
'
back to
'
start
'
using
'
parent
'
array.
Args:
parent (np.array): shape (H, W, 2), storing (px, py) for each pixel.
start (tuple): (x, y) start coordinate.
end (tuple): (x, y) end coordinate.
Returns:
path (list of (x, y)): from start to end inclusive.
Load an image in either gray or color mode (then convert color to gray).
"""
path
=
[]
current
=
end
while
True
:
path
.
append
(
current
)
if
current
==
start
:
break
px
,
py
=
parent
[
current
[
1
],
current
[
0
]]
current
=
(
px
,
py
)
path
.
reverse
()
return
path
def
compute_cost
(
image
,
sigma
=
3.0
,
epsilon
=
1e-5
):
smoothed_img
=
gaussian
(
image
,
sigma
=
sigma
)
canny_img
=
canny
(
smoothed_img
)
cost_img
=
1
/
(
canny_img
+
epsilon
)
return
cost_img
,
canny_img
def
load_image
(
path
,
type
):
# Load image
if
type
==
'
gray
'
:
img
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_GRAYSCALE
)
if
img
is
None
:
@@ -104,82 +25,111 @@ def load_image(path, type):
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
else
:
raise
ValueError
(
"
type must be
'
gray
'
or
'
color
'"
)
return
img
def
downscale
(
img
,
points
,
scale_percent
):
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if
scale_percent
==
100
:
return
img
,
(
tuple
(
points
[
0
]),
tuple
(
points
[
1
]))
else
:
# Compute new dimensions
width
=
int
(
img
.
shape
[
1
]
*
scale_percent
/
100
)
height
=
int
(
img
.
shape
[
0
]
*
scale_percent
/
100
)
new_dimensions
=
(
width
,
height
)
# Downsample
the image
# Downsample
downsampled_img
=
cv2
.
resize
(
img
,
new_dimensions
,
interpolation
=
cv2
.
INTER_AREA
)
### SCALE POINTS
# Original image dimensions
original_width
=
img
.
shape
[
1
]
original_height
=
img
.
shape
[
0
]
# Downsampled image dimensions
downsampled_width
=
width
downsampled_height
=
height
# Scaling factors
scale_x
=
downsampled_width
/
original_width
scale_y
=
downsampled_height
/
original_height
scale_x
=
width
/
img
.
shape
[
1
]
scale_y
=
height
/
img
.
shape
[
0
]
#
Original points
#
Scale the points (x, y)
seed_xy
=
tuple
(
points
[
0
])
target_xy
=
tuple
(
points
[
1
])
# Scale the points
scaled_seed_xy
=
(
int
(
seed_xy
[
0
]
*
scale_x
),
int
(
seed_xy
[
1
]
*
scale_y
))
scaled_target_xy
=
(
int
(
target_xy
[
0
]
*
scale_x
),
int
(
target_xy
[
1
]
*
scale_y
))
return
downsampled_img
,
(
scaled_seed_xy
,
scaled_target_xy
)
def
compute_cost
(
image
,
sigma
=
3.0
,
epsilon
=
1e-5
):
"""
Smooth the image, run Canny edge detection, then invert the edge map into a cost image.
"""
smoothed_img
=
gaussian
(
image
,
sigma
=
sigma
)
canny_img
=
canny
(
smoothed_img
)
cost_img
=
1.0
/
(
canny_img
+
epsilon
)
# Invert edges: higher cost where edges are stronger
return
cost_img
,
canny_img
# Define the following
image_path
=
'
./tests/slice_60_volQ.png
'
image_type
=
'
gray
'
# 'gray' or 'color'
downscale_factor
=
100
# % of original size wanted
points_path
=
'
./tests/LiveWireEndPoints.npy
'
# Load image
image
=
load_image
(
image_path
,
image_type
)
# Load points
points
=
np
.
int0
(
np
.
round
(
np
.
load
(
points_path
)))
# Downscale image and points
scaled_image
,
scaled_points
=
downscale
(
image
,
points
,
downscale_factor
)
seed
,
target
=
scaled_points
# Compute cost image
cost_image
,
canny_img
=
compute_cost
(
scaled_image
)
# Find path and time it
start_time
=
time
.
time
()
dist
,
parent
=
dijkstra
(
cost_image
,
seed
)
path
=
backtrack_path
(
parent
,
seed
,
target
)
end_time
=
time
.
time
()
print
(
f
"
Elapsed time for pathfinding:
{
end_time
-
start_time
:
.
3
f
}
seconds
"
)
def
backtrack_pixels_on_image
(
img_color
,
path_coords
,
bgr_color
=
(
0
,
0
,
255
)):
"""
Color the path on the (already converted BGR) image in the specified color.
`path_coords` should be a list of (row, col) or (y, x).
"""
for
(
row
,
col
)
in
path_coords
:
img_color
[
row
,
col
]
=
bgr_color
return
img_color
color_img
=
cv2
.
cvtColor
(
scaled_image
,
cv2
.
COLOR_GRAY2BGR
)
for
(
x
,
y
)
in
path
:
color_img
[
y
,
x
]
=
(
0
,
0
,
255
)
# red (color of path)
#### Main Script ####
plt
.
figure
(
figsize
=
(
20
,
8
))
plt
.
subplot
(
1
,
2
,
1
)
plt
.
title
(
"
Cost Image
"
)
plt
.
imshow
(
canny_img
,
cmap
=
'
gray
'
)
def
main
():
# Define input parameters
image_path
=
'
./tests/slice_60_volQ.png
'
image_type
=
'
gray
'
# 'gray' or 'color'
downscale_factor
=
100
# % of original size
points_path
=
'
./tests/LiveWireEndPoints.npy
'
plt
.
subplot
(
1
,
2
,
2
)
plt
.
title
(
"
Path from Seed to Target
"
)
plt
.
imshow
(
color_img
[...,
::
-
1
])
# BGR->RGB for plotting
plt
.
show
()
# Load image
image
=
load_image
(
image_path
,
image_type
)
# Load seed and target points
points
=
np
.
int0
(
np
.
round
(
np
.
load
(
points_path
)))
# shape: (2, 2), i.e. [[x_seed, y_seed], [x_target, y_target]]
# Downscale image and points
scaled_image
,
scaled_points
=
downscale
(
image
,
points
,
downscale_factor
)
seed
,
target
=
scaled_points
# Each is (x, y)
# Convert to row,col for scikit-image (which uses (row, col) = (y, x))
seed_rc
=
(
seed
[
1
],
seed
[
0
])
target_rc
=
(
target
[
1
],
target
[
0
])
# Compute cost image
cost_image
,
canny_img
=
compute_cost
(
scaled_image
)
# Find path using route_through_array
# route_through_array expects: route_through_array(image, start, end, fully_connected=True/False)
start_time
=
time
.
time
()
path_rc
,
cost
=
route_through_array
(
cost_image
,
start
=
seed_rc
,
end
=
target_rc
,
fully_connected
=
True
)
end_time
=
time
.
time
()
print
(
f
"
Elapsed time for pathfinding:
{
end_time
-
start_time
:
.
3
f
}
seconds
"
)
# Convert single-channel image to BGR for coloring
color_img
=
cv2
.
cvtColor
(
scaled_image
,
cv2
.
COLOR_GRAY2BGR
)
# Draw path. `path_rc` is a list of (row, col).
# If you want to mark it in red, do (0,0,255) because OpenCV uses BGR format.
color_img
=
backtrack_pixels_on_image
(
color_img
,
path_rc
,
bgr_color
=
(
0
,
0
,
255
))
# Display results
plt
.
figure
(
figsize
=
(
20
,
8
))
plt
.
subplot
(
1
,
2
,
1
)
plt
.
title
(
"
Canny Edges
"
)
plt
.
imshow
(
canny_img
,
cmap
=
'
gray
'
)
plt
.
subplot
(
1
,
2
,
2
)
plt
.
title
(
"
Path from Seed to Target
"
)
# Convert BGR->RGB for pyplot
plt
.
imshow
(
color_img
[...,
::
-
1
])
plt
.
show
()
if
__name__
==
"
__main__
"
:
main
()
Loading