Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pt2d
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
QIM
Tools
pt2d
Merge requests
!3
Live wire to be implemented into GUI
Code
Review changes
Check out branch
Open in Workspace
Download
Patches
Plain diff
Expand sidebar
Merged
Live wire to be implemented into GUI
live_wire
into
GUI
Overview
0
Commits
10
Pipelines
0
Changes
1
Merged
s224389
requested to merge
live_wire
into
GUI
5 months ago
Overview
0
Commits
10
Pipelines
0
Changes
1
0
0
Merge request reports
Viewing commit
fd71c9a4
Prev
Next
Show latest version
1 file
+
142
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
fd71c9a4
Added method using sato and kernel for centerline extraction
· fd71c9a4
Christian
authored
5 months ago
sato_test.py
0 → 100644
+
142
−
0
View file @ fd71c9a4
Edit in single-file editor
Open in Web IDE
import
time
import
cv2
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
skimage.morphology
import
skeletonize
from
skimage.filters
import
gaussian
,
sato
from
skimage.feature
import
canny
from
skimage.graph
import
route_through_array
#### Helper functions ####
def
load_image
(
path
,
type
):
"""
Load an image in either gray or color mode (then convert color to gray).
"""
if
type
==
'
gray
'
:
img
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_GRAYSCALE
)
if
img
is
None
:
raise
FileNotFoundError
(
f
"
Could not read
{
path
}
"
)
elif
type
==
'
color
'
:
img
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_COLOR
)
if
img
is
None
:
raise
FileNotFoundError
(
f
"
Could not read
{
path
}
"
)
else
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
else
:
raise
ValueError
(
"
type must be
'
gray
'
or
'
color
'"
)
return
img
def
downscale
(
img
,
points
,
scale_percent
):
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if
scale_percent
==
100
:
return
img
,
(
tuple
(
points
[
0
]),
tuple
(
points
[
1
]))
else
:
# Compute new dimensions
width
=
int
(
img
.
shape
[
1
]
*
scale_percent
/
100
)
height
=
int
(
img
.
shape
[
0
]
*
scale_percent
/
100
)
new_dimensions
=
(
width
,
height
)
# Downsample
downsampled_img
=
cv2
.
resize
(
img
,
new_dimensions
,
interpolation
=
cv2
.
INTER_AREA
)
# Scaling factors
scale_x
=
width
/
img
.
shape
[
1
]
scale_y
=
height
/
img
.
shape
[
0
]
# Scale the points (x, y)
seed_xy
=
tuple
(
points
[
0
])
target_xy
=
tuple
(
points
[
1
])
scaled_seed_xy
=
(
int
(
seed_xy
[
0
]
*
scale_x
),
int
(
seed_xy
[
1
]
*
scale_y
))
scaled_target_xy
=
(
int
(
target_xy
[
0
]
*
scale_x
),
int
(
target_xy
[
1
]
*
scale_y
))
return
downsampled_img
,
(
scaled_seed_xy
,
scaled_target_xy
)
## NO LONGER INVERSE (NOT 1/...)
def
compute_cost
(
image
,
sigma
=
1.0
,
epsilon
=
1e-1
):
"""
Smooth the image, run Canny edge detection, then invert the edge map into a cost image.
"""
smoothed_img
=
gaussian
(
image
,
sigma
=
sigma
)
canny_img
=
sato
(
smoothed_img
)
canny_thresh
=
canny_img
>
0.08
skeleton
=
skeletonize
(
canny_thresh
)
cost_img
=
1
/
(
skeleton
+
epsilon
)
# Invert edges: higher cost where edges are stronger
return
cost_img
,
skeleton
def
backtrack_pixels_on_image
(
img_color
,
path_coords
,
bgr_color
=
(
0
,
0
,
255
)):
"""
Color the path on the (already converted BGR) image in the specified color.
`path_coords` should be a list of (row, col) or (y, x).
"""
for
(
row
,
col
)
in
path_coords
:
img_color
[
row
,
col
]
=
bgr_color
return
img_color
#### Main Script ####
def
main
():
# Define input parameters
image_path
=
'
./tests/slice_60_volQ.png
'
image_type
=
'
gray
'
# 'gray' or 'color'
downscale_factor
=
100
# % of original size
points_path
=
'
./tests/LiveWireEndPoints.npy
'
# Load image
image
=
load_image
(
image_path
,
image_type
)
# Load seed and target points
points
=
np
.
int0
(
np
.
round
(
np
.
load
(
points_path
)))
# shape: (2, 2), i.e. [[x_seed, y_seed], [x_target, y_target]]
# Downscale image and points
scaled_image
,
scaled_points
=
downscale
(
image
,
points
,
downscale_factor
)
seed
,
target
=
scaled_points
# Each is (x, y)
# Convert to row,col for scikit-image (which uses (row, col) = (y, x))
seed_rc
=
(
seed
[
1
],
seed
[
0
])
target_rc
=
(
target
[
1
],
target
[
0
])
# Compute cost image
cost_image
,
canny_img
=
compute_cost
(
scaled_image
)
# Find path using route_through_array
# route_through_array expects: route_through_array(image, start, end, fully_connected=True/False)
start_time
=
time
.
time
()
path_rc
,
cost
=
route_through_array
(
cost_image
,
start
=
seed_rc
,
end
=
target_rc
,
fully_connected
=
True
)
end_time
=
time
.
time
()
print
(
f
"
Elapsed time for pathfinding:
{
end_time
-
start_time
:
.
3
f
}
seconds
"
)
# Convert single-channel image to BGR for coloring
color_img
=
cv2
.
cvtColor
(
scaled_image
,
cv2
.
COLOR_GRAY2BGR
)
# Draw path. `path_rc` is a list of (row, col).
# If you want to mark it in red, do (0,0,255) because OpenCV uses BGR format.
color_img
=
backtrack_pixels_on_image
(
color_img
,
path_rc
,
bgr_color
=
(
0
,
0
,
255
))
# Display results
plt
.
figure
(
figsize
=
(
20
,
8
))
plt
.
subplot
(
1
,
2
,
1
)
plt
.
title
(
"
Canny Edges
"
)
plt
.
imshow
(
canny_img
,
cmap
=
'
gray
'
)
plt
.
subplot
(
1
,
2
,
2
)
plt
.
title
(
"
Path from Seed to Target
"
)
# Convert BGR->RGB for pyplot
plt
.
imshow
(
color_img
[...,
::
-
1
])
plt
.
show
()
if
__name__
==
"
__main__
"
:
main
()
Loading