Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deep learning volume segmentation\n",
"\n",
"Authors: Alessia Saccardo (s212246@dtu.dk) & Felipe Delestro (fima@dtu.dk)\n",
"\n",
"This notebook aims to demonstrate the feasibility of implementing a comprehensive deep learning segmentation pipeline solely leveraging the capabilities offered by the qim3d library. Specifically, it will highlight the utilization of the annotation tool and walk through the process of creating and training a Unet model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import qim3d\n",
"import numpy as np \n",
"import os "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load data\n",
"Qim3d library contains a set of example volumes which can be easily loaded using `qim3d.examples.{volume_name}`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vol = qim3d.examples.bone_128x128x128"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To easily have an insight of how the volume looks like we can interact with it using the `slicer` function from `qim3d`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qim3d.viz.slicer(vol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generate dataset for training\n",
"\n",
"In order to train the classification model, we need to create a dataset from the volume.\n",
"\n",
"This means that we'll need a few slices to be used for `training` and at least one for the `test`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dataset for training the model is managed by `qim3d.utils.prepare_datasets` and it expects files to follow this structure:\n",
"\n",
"<pre>\n",
"dataset\n",
"├── test\n",
"│ ├── images\n",
"│ │ └── FileA.png\n",
"│ └── labels\n",
"│ └── FileA.png\n",
"└── train\n",
" ├── images\n",
" │ ├── FileB.png\n",
" │ └── FileC.png\n",
" └── labels\n",
" ├── FileB.png\n",
" └── FileC.png\n",
"\n",
"\n",
"</pre>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Number of slices that will be used\n",
"ntraining = 4\n",
"ntest = 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the following cell, we get the slice indices, making sure that we're not using the same indices for training and test."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a set with all the indices\n",
"all_idxs = set(range(vol.shape[0]))\n",
"\n",
"# Get indices for training data\n",
"training_idxs = list(np.random.choice(list(all_idxs), size=ntraining))\n",
"print(f\"Slices for training data...: {training_idxs}\")\n",
"\n",
"# Get indices for test data\n",
"test_idxs = list(np.random.choice(list(all_idxs - set(training_idxs)), size=ntest, replace=False))\n",
"print(f\"Slices for test data.......: {test_idxs}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create folder structure\n",
"Here we create the necessary directories"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Base path for the training data\n",
"base_path = os.path.expanduser(\"~/dataset\")\n",
"\n",
"# Create directories\n",
"print(\"Creating directories:\")\n",
"for folder_split in [\"train\", \"test\"]:\n",
" for folder_type in [\"images\", \"labels\"]:\n",
" path = os.path.join(base_path, folder_split, folder_type)\n",
" os.makedirs(path, exist_ok=True)\n",
" print(path)\n",
"\n",
"# Here we have the option to remove any previous files\n",
"clean_files = True\n",
"if clean_files:\n",
" for root, dirs, files in os.walk(base_path):\n",
" for file in files:\n",
" file_path = os.path.join(root, file)\n",
" os.remove(file_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Annotate data\n",
"\n",
"The following cell will generate an annotation tool for each slice that was requested. \n",
"\n",
"You should use the tool to drawn a mask over the structures you're willing to detect, and press the button `Update` so that the mask is saved."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"annotation_tools = {}\n",
"for idx in training_idxs + test_idxs:\n",
" if idx in training_idxs:\n",
" subset = \"training\"\n",
" elif idx in test_idxs:\n",
" subset = \"test\"\n",
" annotation_tools[idx] = qim3d.gui.annotation_tool.Interface()\n",
" annotation_tools[idx].name_suffix = f\"_{idx}\" \n",
" print(f\"Annotation for slice {idx} ({subset})\")\n",
" annotation_tools[idx].launch(vol[idx])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Getting masks from the annotation tool\n",
"The masks are stored in the annotation tool when the button `Update` is pressed\n",
"\n",
"Here we extract the masks and save them to disk, followign the standard needed for the DL model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Saving images and masks to disk\")\n",
"for idx in training_idxs + test_idxs:\n",
" \n",
" if idx in training_idxs:\n",
" folder_split = \"train\"\n",
"\n",
" elif idx in test_idxs:\n",
" folder_split = \"test\"\n",
"\n",
" print (f\"- slice {idx} ({folder_split})\")\n",
" mask_dict = annotation_tools[idx].get_result()\n",
" mask = list(mask_dict.values())[0]\n",
"\n",
" # Save image\n",
" qim3d.io.save(os.path.join(base_path,folder_split,\"images\",f\"{idx}.png\"), vol[idx], replace=True)\n",
" # Save label\n",
" qim3d.io.save(os.path.join(base_path,folder_split,\"labels\",f\"{idx}.png\"), mask, replace=True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Build Unet"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Building and training the Unet model is straightforward using `qim3d`. \n",
"\n",
"We first need to instantiate the model by defying its size, which can be either *small*, *medium* or *large*. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# defining model\n",
"model = qim3d.models.UNet(size = 'small', dropout = 0.25)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we need to decide which type of augumentation to apply to the data. \n",
"\n",
"The `qim3d.utils.Augmentation` allows to specify how the images should be reshaped to the appropriate size and the level of transformation to apply respectively to train, test and validation sets. \n",
"\n",
"The resize must be choosen between [*crop*, *reshape*, *padding*] and the level of transformation must be chosse between [*None*, *light*, *moderate*, *heavy*]. The user can also specify the mean and standard deviation values for normalizing pixel intensities."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# defining augmentation\n",
"aug = qim3d.utils.Augmentation(resize = 'crop', transform_train = 'light')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then the datasets and dataloaders are instantiated "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# datasets and dataloaders\n",
"train_set, val_set, test_set = qim3d.utils.prepare_datasets(path = base_path,\n",
" val_fraction = 0.5,\n",
" model = model,\n",
" augmentation = aug)\n",
"\n",
"\n",
"train_loader, val_loader, test_loader = qim3d.utils.prepare_dataloaders(train_set, \n",
" val_set,\n",
" test_set,\n",
" batch_size = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The hyperparameters are defined using the function `qim3d.models.Hyperparameters` and the model can be easily trained by running the function `qim3d.utils.train_model` which returns also a plot of the losses at the end of the training if the option is selected by the user "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# model hyperparameters\n",
"hyperparameters = qim3d.models.Hyperparameters(model, n_epochs=10, \n",
" learning_rate = 5e-3, loss_function='DiceCE',\n",
" weight_decay=1e-3)\n",
"\n",
"# training model\n",
"qim3d.utils.train_model(model, hyperparameters, train_loader, val_loader, plot=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check results\n",
"\n",
"To compute the inference step it is just needed to run `qim3d.utils.inference`.\n",
"\n",
"The results can be visualize with the function `qim3d.viz.grid_pred` that shows the predicted segmentation along with a comparison between the ground truth."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"in_targ_preds_test = qim3d.utils.inference(test_set, model)\n",
"qim3d.viz.grid_pred(in_targ_preds_test,alpha=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compute inference on entire volume\n",
"\n",
"Given that the input is a volume, the goal is to perform inference on the entire volume rather than individual slices.\n",
"\n",
"By using the function `qim3d.utils.volume_inference` it is possible to obtain the segmentation volume output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inference_vol = qim3d.utils.models.volume_inference(vol, model)\n",
"qim3d.viz.slicer(inference_vol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also visualize the created mask together with the original volume"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vol_masked = qim3d.viz.vol_masked(vol, inference_vol, viz_delta=128)\n",
"qim3d.viz.slicer(vol_masked, cmap=\"PiYG\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}