Skip to content
Snippets Groups Projects
Commit 9278a1ef authored by fima's avatar fima :beers:
Browse files

Hotfix: Torch dependency

parent aff52c48
No related branches found
No related tags found
No related merge requests found
......@@ -6,14 +6,14 @@ import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from matplotlib import colormaps
from qim3d.utils._logger import log
import torch
import matplotlib
def plot_metrics(
*metrics: tuple[dict[str, float]],
linestyle: str = "-",
batch_linestyle: str = "dotted",
labels: list|None = None,
labels: list | None = None,
figsize: tuple = (16, 6),
show: bool = False
):
......@@ -81,13 +81,13 @@ def plot_metrics(
def grid_overview(
data: list|torch.utils.data.Dataset,
num_images: int = 7,
cmap_im: str = "gray",
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False
)-> matplotlib.figure.Figure:
data: list,
num_images: int = 7,
cmap_im: str = "gray",
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False,
) -> matplotlib.figure.Figure:
"""Displays an overview grid of images, labels, and masks (if they exist).
Labels are the annotated target segmentations
......@@ -121,6 +121,7 @@ def grid_overview(
and the length of the data.
- The grid layout and dimensions vary based on the presence of a mask.
"""
import torch
# Check if data has a mask
has_mask = len(data[0]) > 2 and data[0][-1] is not None
......@@ -187,7 +188,7 @@ def grid_pred(
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False,
)-> matplotlib.figure.Figure:
) -> matplotlib.figure.Figure:
"""Displays a grid of input images, predicted segmentations, ground truth segmentations, and their comparison.
Displays a grid of subplots representing different aspects of the input images and segmentations.
......@@ -290,7 +291,9 @@ def grid_pred(
return fig
def vol_masked(vol: np.ndarray, vol_mask: np.ndarray, viz_delta: int=128) -> np.ndarray:
def vol_masked(
vol: np.ndarray, vol_mask: np.ndarray, viz_delta: int = 128
) -> np.ndarray:
"""
Applies masking to a volume based on a binary volume mask.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment