Skip to content
Snippets Groups Projects
StructureTensor3D_Examples-checkpoint.ipynb 1010 KiB
Newer Older
  • Learn to ignore specific revisions
  • vand's avatar
    vand committed
           "    var width = this.canvas.width/mpl.ratio\n",
           "    var dataURL = this.canvas.toDataURL();\n",
           "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
           "}\n",
           "\n",
           "mpl.figure.prototype.updated_canvas_event = function() {\n",
           "    // Tell IPython that the notebook contents must change.\n",
           "    IPython.notebook.set_dirty(true);\n",
           "    this.send_message(\"ack\", {});\n",
           "    var fig = this;\n",
           "    // Wait a second, then push the new image to the DOM so\n",
           "    // that it is saved nicely (might be nice to debounce this).\n",
           "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
           "}\n",
           "\n",
           "mpl.figure.prototype._init_toolbar = function() {\n",
           "    var fig = this;\n",
           "\n",
           "    var nav_element = $('<div/>');\n",
           "    nav_element.attr('style', 'width: 100%');\n",
           "    this.root.append(nav_element);\n",
           "\n",
           "    // Define a callback function for later on.\n",
           "    function toolbar_event(event) {\n",
           "        return fig.toolbar_button_onclick(event['data']);\n",
           "    }\n",
           "    function toolbar_mouse_event(event) {\n",
           "        return fig.toolbar_button_onmouseover(event['data']);\n",
           "    }\n",
           "\n",
           "    for(var toolbar_ind in mpl.toolbar_items){\n",
           "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
           "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
           "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
           "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
           "\n",
           "        if (!name) { continue; };\n",
           "\n",
           "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
           "        button.click(method_name, toolbar_event);\n",
           "        button.mouseover(tooltip, toolbar_mouse_event);\n",
           "        nav_element.append(button);\n",
           "    }\n",
           "\n",
           "    // Add the status bar.\n",
           "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
           "    nav_element.append(status_bar);\n",
           "    this.message = status_bar[0];\n",
           "\n",
           "    // Add the close button to the window.\n",
           "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
           "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
           "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
           "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
           "    buttongrp.append(button);\n",
           "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
           "    titlebar.prepend(buttongrp);\n",
           "}\n",
           "\n",
           "mpl.figure.prototype._root_extra_style = function(el){\n",
           "    var fig = this\n",
           "    el.on(\"remove\", function(){\n",
           "\tfig.close_ws(fig, {});\n",
           "    });\n",
           "}\n",
           "\n",
           "mpl.figure.prototype._canvas_extra_style = function(el){\n",
           "    // this is important to make the div 'focusable\n",
           "    el.attr('tabindex', 0)\n",
           "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
           "    // off when our div gets focus\n",
           "\n",
           "    // location in version 3\n",
           "    if (IPython.notebook.keyboard_manager) {\n",
           "        IPython.notebook.keyboard_manager.register_events(el);\n",
           "    }\n",
           "    else {\n",
           "        // location in version 2\n",
           "        IPython.keyboard_manager.register_events(el);\n",
           "    }\n",
           "\n",
           "}\n",
           "\n",
           "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
           "    var manager = IPython.notebook.keyboard_manager;\n",
           "    if (!manager)\n",
           "        manager = IPython.keyboard_manager;\n",
           "\n",
           "    // Check for shift+enter\n",
           "    if (event.shiftKey && event.which == 13) {\n",
           "        this.canvas_div.blur();\n",
           "        // select the cell after this one\n",
           "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
           "        IPython.notebook.select(index + 1);\n",
           "    }\n",
           "}\n",
           "\n",
           "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
           "    fig.ondownload(fig, null);\n",
           "}\n",
           "\n",
           "\n",
           "mpl.find_output_cell = function(html_output) {\n",
           "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
           "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
           "    // IPython event is triggered only after the cells have been serialised, which for\n",
           "    // our purposes (turning an active figure into a static one), is too late.\n",
           "    var cells = IPython.notebook.get_cells();\n",
           "    var ncells = cells.length;\n",
           "    for (var i=0; i<ncells; i++) {\n",
           "        var cell = cells[i];\n",
           "        if (cell.cell_type === 'code'){\n",
           "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
           "                var data = cell.output_area.outputs[j];\n",
           "                if (data.data) {\n",
           "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
           "                    data = data.data;\n",
           "                }\n",
           "                if (data['text/html'] == html_output) {\n",
           "                    return [cell, data, j];\n",
           "                }\n",
           "            }\n",
           "        }\n",
           "    }\n",
           "}\n",
           "\n",
           "// Register the function which deals with the matplotlib target/channel.\n",
           "// The kernel may be null if the page has been refreshed.\n",
           "if (IPython.notebook.kernel != null) {\n",
           "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
           "}\n"
          ],
          "text/plain": [
           "<IPython.core.display.Javascript object>"
          ]
         },
         "metadata": {},
         "output_type": "display_data"
        },
        {
         "data": {
          "text/html": [
           "<img src=\"\" width=\"639.999990463257\">"
          ],
          "text/plain": [
           "<IPython.core.display.HTML object>"
          ]
         },
         "metadata": {},
         "output_type": "display_data"
        }
       ],
       "source": [
        "t = np.sqrt(1/2)\n",
        "u_clusters = np.array([[1,0,0],[0,0,1],[t,0,t],[-t,0,t]]).T # initalizing orientations close to desired solution   \n",
        "dist = st3d.tensor_vector_distance(S,u_clusters)\n",
        "assignment = np.argmin(dist,axis = 1)\n",
        "     \n",
        "S_clusters = np.zeros((6,u_clusters.shape[1]))\n",
        "for r in range(10): # iterations of k-means\n",
        "    \n",
        "    for i in range(u_clusters.shape[1]): # collecting ST for all voxels in a cluster\n",
        "        S_clusters[:,i] = np.mean(S[:,assignment==i],axis=1)\n",
        "    val,vec = st3d.eig_special(S_clusters) # estimating new cluster orientation\n",
        "    print(f'Iter {r}: moved cluster centers for for {np.sqrt(np.sum((u_clusters-vec)**2))}')\n",
        "    u_clusters = vec\n",
        "    dist = st3d.tensor_vector_distance(S,u_clusters)\n",
        "    assignment_new = np.argmin(dist,axis = 1)\n",
        "    print(f'Iter {r}: moved {np.sum(abs(assignment-assignment_new))} voxels')\n",
        "    assignment = assignment_new\n",
        "\n",
        "st3d.show_vol(assignment.reshape(volume.shape), cmap='jet')"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": []
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.7.4"
      }
     },
     "nbformat": 4,
     "nbformat_minor": 2
    }