Skip to content
Snippets Groups Projects
Commit 83a6dcbf authored by hanste's avatar hanste
Browse files

Added files from local to remote

parent ecff0650
No related branches found
No related tags found
No related merge requests found
import numpy as np
def psign(p1, p2, p3):
return (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1]);
def PointInTriangle(pt, v1, v2, v3):
d1 = psign(pt, v1, v2)
d2 = psign(pt, v2, v3)
d3 = psign(pt, v3, v1)
has_neg = (d1 < 0) | (d2 < 0) | (d3 < 0)
has_pos = (d1 > 0) | (d2 > 0) | (d3 > 0)
return not (has_neg & has_pos)
def get_edges(tri):
return [(tri[0], tri[1]), (tri[0], tri[2]), (tri[1], tri[2])]
def default_add(d, e, V, ti):
if e in d:
d[e][1].append(ti)
else:
a, b = e
length = np.linalg.norm(V[a] - V[b])
if a == b:
raise ValueError('Adding edge with same index:', e, ti)
d[e] = [length, [ti]]
return d
def get_all_edges(V, T):
E_dict = {}
for n, tri in enumerate(T):
E = get_edges(tri) # outputs list of edges with sorted vertex indices. eg [(4,7),(4,8),(7,8)]
for e in E:
a, b = e
length = np.linalg.norm(V[a] - V[b])
E_dict = default_add(E_dict, e, V, n)
return E_dict
def split_long_edges(V, T):
E_dict = get_all_edges(V, T)
target_length = np.median([length for length, _ in E_dict.values()])
run = True
n_init_V = len(V)
while run:
run = False
max_length = 0
for cur_e in E_dict.keys():
cur_length, cur_Ti = E_dict[cur_e]
if cur_length > max_length:
max_length = cur_length
e = cur_e
Ti = cur_Ti
a, b = cur_e
if max_length > target_length:
run = True
# make a new vertex
Vnew = V[a] + V[b]
N = 2.0
Vnew = Vnew / N
new_length = np.linalg.norm(Vnew - V[a])
n = len(V)
V = np.concatenate([V, [Vnew]], axis=0)
for ti in sorted(Ti)[::-1]:
# find the vertex index which a,b is not co-linear with
m = [i for i in T[ti] if i != a and i != b][0]
old = np.pad(np.array([V[ii] for ii in T[ti]]), ((1,0), (0,0)), mode='wrap')+1
new1 = np.pad(np.array([V[ii] for ii in sorted([m, n, a])]), ((1,0), (0,0)), mode='wrap')+2
new2 = np.pad(np.array([V[ii] for ii in sorted([m, n, b])]), ((1,0), (0,0)), mode='wrap')
T[ti] = sorted([m, n, a]) # ADD m,n,a REM a,b,m
tj = len(T)
T.append(sorted([m, n, b])) # ADD m,n,b
# add new edges
an = tuple(sorted([n, a]))
am = tuple(sorted([m, a]))
bn = tuple(sorted([n, b]))
bm = tuple(sorted([m, b]))
mn = tuple(sorted([m, n]))
E_dict[tuple(sorted([m, b]))][1] = [tk for tk in E_dict[tuple(sorted([m, b]))][1] if tk != ti]
cross_length = np.linalg.norm(V[m] - V[n])
E_dict = default_add(E_dict, an, V, ti) # ADD ti to an
E_dict = default_add(E_dict, bn, V, tj) # ADD tj to bn
E_dict = default_add(E_dict, bm, V, tj) # ADD tj to bm
E_dict = default_add(E_dict, mn, V, ti) # ADD ti to mn
E_dict = default_add(E_dict, mn, V, tj) # ADD tj to mn
del E_dict[e]
interior_vertex_indices = set(range(len(V)))
for e in E_dict.keys():
if len(E_dict[e][1]) == 1:
interior_vertex_indices = interior_vertex_indices - set(e)
# Smooth interior triangulated points
for _ in range(100):
for i in interior_vertex_indices:
Vs = []
for e in E_dict.keys():
if i in e:
vn = [j for j in e if j != i][0]
Vs.append(V[vn])
Vnew = np.mean(Vs, axis=0)
V[i] = 0.7 * V[i] + 0.3 * Vnew
return V, T
def polygon_triangulate(P):
N = len(P)
P3 = np.pad(P, ((0,0), (0,1)))
angle_sum = 0
angles = []
exterior_angles = []
T = []
for p1, p2, p3 in zip(P3, np.roll(P3, -1, axis=0), np.roll(P3, -2, axis=0)):
v1 = p2 - p1
v2 = p3 - p2
cross = np.cross(v1, v2)
dot = np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)), -1, 1)
angle = np.sign(cross[2])*np.arccos(dot)
exterior_angles.append(angle/(2*np.pi)*360)
indices = np.arange(N)
if np.sum(exterior_angles) < 0:
indices = indices[::-1]
# iteratively add a trinagle and remove the index to the point which can no longer be part of another triangle
while len(indices) > 2:
best_i = 0
best_j = 0
best_k = 0
best_n = 0
best_length = np.inf
# iterate over the remaining points to find the best candidate
for n, (i,j,k), in enumerate(zip(np.roll(indices, 1), indices, np.roll(indices, -1))):
v1 = P3[j] - P3[i]
v2 = P3[k] - P3[j]
cross = np.cross(v1, v2)
angle = np.arcsin(cross[2] / (np.linalg.norm(v1) * np.linalg.norm(v2)))
length = np.linalg.norm(v1) + np.linalg.norm(v2)
# pick the shortest triangle which is interior
if angle > 0 and length < best_length:
# check all point to see if one lies inside the triangle, skip in that case
contains_point = False
for nn in range(N):
if nn == i or nn == j or nn == k:
continue
if PointInTriangle(P[nn], P[i], P[j], P[k]):
contains_point = True
break
if contains_point:
continue
best_length = length
best_i = i
best_j = j
best_k = k
best_n = n
# add triangle and remove index to point which can no longer be part of another triangle
T.append(sorted([best_i, best_j, best_k]))
indices = np.delete(indices, best_n)
P, T = split_long_edges(P, T)
return exterior_angles, P, T
class PlotTriangulation:
colors = np.random.uniform(0.2,1,(2048, 3))
def __init__(self, V, T, add_labels=True):
import matplotlib.pyplot as plt
V0 = np.copy(V)
if np.argmax(np.max(V0, axis=0)) == 1:
V0 = V0[:,::-1]
margins = (np.max(V0, axis=0) - np.min(V0, axis=0))*0.05
V0 = V0 - np.min(V0, axis=0) + margins
I = np.zeros((np.max(V0[:,1] + 1 + margins[1]).astype(np.int32), np.max(V0[:,0] + 1 + margins[0]).astype(np.int32)))
plt.imshow(I, cmap='gray')
plt.axis('off')
plt.subplots_adjust(bottom=0, top=1, left=0,right=1)
for j in range(len(T)):
tri = T[j]
t1 = plt.Polygon(V0[tri,:], alpha=0.7, color=PlotTriangulation.colors[j%2048])
plt.gca().add_patch(t1)
if add_labels:
plt.text(np.mean(V0[tri,0]), np.mean(V0[tri,1]), str(j))
if add_labels:
for i, v in enumerate(V0):
plt.text(v[0], v[1], str(i), color='orange')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment