Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""Convenience functions for easy visualization of 3D volumes
"""
import sys
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.image as mpimg
import matplotlib as mp
def progressbar(it, prefix="", size=60, file=sys.stdout):
count = len(it)
def show(j):
x = int(size*j/count)
file.write("%s[%s%s] %i/%i\r" % (prefix, "#"*x, "."*(size-x), j, count))
file.flush()
show(0)
for i, item in enumerate(it):
yield item
show(i+1)
file.write("\n")
file.flush()
def plot_slice_from_axis( volume, slice_idx=0, axis=0, origin='upper', cmap='gray' ):
"""Plot a single slice from a 3D volume
Parameters
----------
volume : 3D array_like
3D volume to plot slice from
slice_idx : int, optional
Which slice to plot
axis : int, optional
Axis perpendicular to image plane. `slice_idx` is along this axis.
origin : {'lower', 'upper'}, optional
If 'lower' display row 0 at bottom.
cmap : str or Colormap instance, optional
A colormap specification. See
https://matplotlib.org/gallery/color/colormap_reference.html
Returns
-------
None
See also
--------
view_from_axis
matplotlib.pyplot.imshow
"""
if axis == 0:
im = volume[slice_idx,:,:]
elif axis == 1:
im = volume[:,slice_idx,:]
else:
im = volume[:,:,slice_idx]
plt.figure()
plt.imshow( im, cmap=cmap, origin=origin )
plt.show()
def plot_histogram( volume, nbin=100, output=False):
"""Plot a histogram of the data based on the full dataset
Parameters
----------
volume : 3D array_like
3D volume to plot slice from
nbin : int, optional
Number of bins for the histogram
Returns
-------
n : 2D array_like
histogram count
bins : 2D array_like
bin edges
See also
--------
matplotlib.pyplot.hist
"""
plt.figure(figsize=(5, 5))
Vflat = volume.flatten()
n, bins, _ = plt.hist(Vflat,nbin)
plt.title('Histogram')
if output == True:
return n, bins
plt.show()
def plot_orthogonal_slices( volume, z, y, x, origin='lower', cmap='gray', layout=(1,3), show=True ):
"""Alias for subplot_slice_from_axis with slightly different parameter order"""
return subplot_slice_from_axis(volume, (x, y, z), origin=origin, cmap=cmap, layout=layout, show=show)
def subplot_slice_from_axis( volume, slice_idx, origin='lower', cmap='gray', layout=(1,3), show=True):
"""Plot slices from the three standard orthorgonal axes of a 3D volume
Parameters
----------
volume : 3D array_like
3D volume to plot slice from
slice_idx : int or 3-tuple, optional
Which slices to plot
origin : {'lower', 'upper'}, optional
If 'lower' display row 0 at bottom.
cmap : str or Colormap instance, optional
A colormap specification. See
https://matplotlib.org/gallery/color/colormap_reference.html
layout : {(2,2), (3,1), (1,3)}, optional
Number of rows and columns in the layout.
Returns
-------
Figure if show=False else None
See also
--------
plot_orthogonal_slices
plot_slice_from_axis
plot_all_slices
plot_vol
by bepi@dtu.dk (2019.08.08)
"""
if type(slice_idx) is int:
slice_idx = (slice_idx,slice_idx,slice_idx)
fig = plt.figure(figsize=(layout[1]*5, layout[0]*3.5))
plt.subplot(layout[0], layout[1], 1)
plt.imshow( volume[slice_idx[2],:,:], cmap=cmap, origin=origin )
plt.xlabel('x', fontsize=10)
plt.ylabel('y', fontsize=10)
plt.title('z_axis view (slice = ' + str(slice_idx[2]) + ')')
if volume.dtype != 'bool':
plt.colorbar()
plt.subplot(layout[0], layout[1], 2)
plt.imshow( volume[:,slice_idx[1],:], cmap=cmap, origin=origin )
plt.xlabel('x', fontsize=10)
plt.ylabel('z', fontsize=10)
plt.title('y_axis view (slice = ' + str(slice_idx[1]) + ')')
if volume.dtype != 'bool':
plt.colorbar()
plt.subplot(layout[0], layout[1], 3)
plt.imshow( volume[:,:,slice_idx[0]], cmap=cmap, origin=origin )
plt.xlabel('y', fontsize=10)
plt.ylabel('z', fontsize=10)
plt.title('x_axis view (slice = ' + str(slice_idx[0]) + ')')
if volume.dtype != 'bool':
plt.colorbar()
if show:
plt.show()
else:
return fig
def plot_all_slices( volume, axis=0 ):
"""Plot all slices from a 3D volume or image stack
Parameters
----------
volume : 3D array_like
3D volume to plot slice from
axis : int, optional
Axis perpendicular to image plane
Returns
-------
None
See also
--------
view_from_axis
matplotlib.pyplot.imshow
"""
n = volume.shape[axis]
# Aim for a rectangular grid. Should be configurable
rows = max(1, round(n**(0.5)))
cols = n // rows + (n % rows > 0)
idx = [ range(volume.shape[ax]) for ax in range(axis)]
for i in range(n):
plt.subplot(rows, cols, i+1)
plt.imshow( volume[idx + [i,...]], cmap='gray' )
def ind2rgb( labelimage,cmap = plt.cm.get_cmap('nipy_spectral')):
"""Convert indexed image to and rgb image
Parameters
----------
volume : 3D array_like
3D indexed image, e.g. produced with ndimage.measurements.label
cmap : matplotlib.colors.LinearSegmentedColormap
Returns
-------
rgb : labelled image as rgb
See also
--------
ndimage.measurements.label
by ctri@dtu.dk modified by bepi@dtu.dk (2019.09.17)
"""
# define colormap
norm = colors.Normalize( vmin=labelimage.min(), vmax=labelimage.max())
# convert to rgb
rgba = cmap(norm(labelimage))
return rgba
def show_vol( volume, axis=0, origin='upper', cmap='gray' ):
"""Show slices of a volume.
Parameters
----------
volume : 3D array_like
A 3D volume to display
axis : int, optional
Axis perpendicular to image plane
origin : {'lower', 'upper'}, optional
If 'lower' display row 0 at bottom.
cmap : str or Colormap instance
A colormap specification. See
https://matplotlib.org/gallery/color/colormap_reference.html
Returns
-------
None
See also
--------
plot_slice_from_axis
plot_all_slices
plot_orthogonal_slices
by vand@dtu.dk.
Modified by ctri@dtu.dk (2019.09.11)
Modified (added colormap option) by bepi@dtu.dk (2019.09.14)
"""
# swap axis depending on axis input
if axis == 1 :
volume = np.swapaxes(volume,0,1)
elif axis == 2:
volume = np.swapaxes(volume,0,2)
# find range of data
v_min = volume.min()
v_max = volume.max()
dim = volume.shape
Z = dim[0]
z = round(0.5*Z)-1
fig, ax = plt.subplots()
ax.imshow(volume[z,:,:], cmap=cmap, origin=origin, vmin=v_min, vmax=v_max)
plt.title('slice z=%i' %z)
def update_drawing():
ax.clear()
ax.imshow(volume[z,:,:], cmap=cmap, origin=origin, vmin=v_min, vmax=v_max)
plt.draw()
plt.title('slice z=%i' %z)
def key_press(event):
nonlocal z
if event.key == "up":
z = min(z+1,Z-1)
elif event.key == 'down':
z = max(z-1,0)
elif event.key == 'right':
z = min(z+10,Z-1)
elif event.key == 'left':
z = max(z-10,0)
elif event.key == 'pagedown':
z = min(z+50,Z+1)
elif event.key == 'pageup':
z = max(z-50,0)
update_drawing()
fig.canvas.mpl_connect('key_press_event', key_press)
def scroll(event):
if event.step > 0:
event.key = 'up'
elif event.step < 0:
event.key = 'down'
key_press(event)
fig.canvas.mpl_connect('key_press_event', key_press)
fig.canvas.mpl_connect('scroll_event', scroll)
instructions = '''Instructions:
Controls
--------
'up-arrow' : Next slice in volume
'down-arrow' : Previous slice in volume
'right-arrow' : +10 slices
'left-arrow' : -10 slices
'PgUp' : +50 slices
'PgDown' : -50 slices
scroll wheel : previous/next slice
'''
print( instructions )
plt.show()
def rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=True):
"""
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
:param nlabels: Number of labels (size of colormap)
:param type: 'bright' for strong colors, 'soft' for pastel colors
:param first_color_black: Option to use first color as black, True or False
:param last_color_black: Option to use last color as black, True or False
:param verbose: Prints the number of labels and shows the colormap. True or False
:return: colormap for matplotlib
https://github.com/delestro/rand_cmap
bepi@dtu.dk
"""
from matplotlib.colors import LinearSegmentedColormap
import colorsys
import numpy as np
if type not in ('bright', 'soft'):
print ('Please choose "bright" or "soft" for type')
return
if verbose:
print('Number of labels: ' + str(nlabels))
# Generate color map for bright colors, based on hsv
if type == 'bright':
randHSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.2, high=1),
np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]
# Convert HSV list to RGB
randRGBcolors = []
for HSVcolor in randHSVcolors:
randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Generate soft pastel colors, by limiting the RGB spectrum
if type == 'soft':
low = 0.6
high = 0.95
randRGBcolors = [(np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high)) for i in range(nlabels)]
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Display colorbar
if verbose:
from matplotlib import colors, colorbar
from matplotlib import pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(15, 0.5))
bounds = np.linspace(0, nlabels, nlabels + 1)
norm = colors.BoundaryNorm(bounds, nlabels)
cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None,
boundaries=bounds, format='%1i', orientation=u'horizontal')
return random_colormap
def color_skeleton(B,S,D,fig_show=True):
"""color map the skeleton into 0-black 1-white and the positive distances cool and negative warm
Parameters
----------
B : 3D array_like
A 3D binary array
S : 3D array_like
A 3D skeleton array
D : 3D array_like
A 3D distance array
fig_show : logical, optional
show the figure produces by the binary image, skeleton, distances and the colormap
Returns
-------
U : 3D array_like
A 3D distance array
cmap : matplotlib.colors.LinearSegmentedColormap
cmbar : matplotlib.cm.ScalarMappable
cbtick : array_like
position of the labels of the colorbar
cbticklabel : str,
list of labels for colormap
by bepi@dtu.dk (2019.09.01) Modified (2019.09.16)
"""
U = B.astype(np.uint8)
ds = D[S]
minmax = np.array([ds.min(), ds.max()])
ds[ds>0] = 2+126*(minmax[1]-ds[ds>0])/minmax[1]# flipping for symmetry
ds[ds<0] = 129+126*ds[ds<0]/minmax[0]
U[S] = ds
#cmap = [0 0 0; 1 1 1; autumn(127);plt.get_cmap('winter_r')[127])];
# sample the colormaps that you want to use. Use 128 from each so we get 256 colors in total
colors2 = plt.cm.autumn(np.linspace(0., 1, 127))
colors3 = plt.cm.winter_r(np.linspace(0, 1, 127))
color01 = np.array([[0,0,0,1],[1,1,1,1]])
# combine them and build a new colormap
colors23 = np.vstack((colors2, colors3))
colorsall = np.vstack((color01,colors23))
cmap = mp.colors.LinearSegmentedColormap.from_list('my_colormap', colorsall)
cmap.set_bad(color= 'black',alpha = '0')
barmap = mp.colors.LinearSegmentedColormap.from_list('my_colormap_1', colors23)
norm = mp.colors.Normalize(vmin=0, vmax=254)
cmbar = mp.cm.ScalarMappable(cmap=barmap,norm=norm)
cmbar.set_array([])
cbtl = np.round(10*np.array([minmax[1],0,-minmax[0]]))/10
cbticklabel = [str(x) for x in cbtl]
cbtick = np.array([1,126,253])
if fig_show:
fig = plt.figure(figsize=(5,5))
plt.imshow(U, cmap=cmap)
cbar= fig.colorbar(cmbar)
cbar.set_ticks(cbtick)
cbar.set_ticklabels(cbticklabel)
plt.show()
return(U,cmap,cmbar,cbtick,cbticklabel)