Skip to content
Snippets Groups Projects
Commit 37ed03fa authored by willap's avatar willap
Browse files

updated

parent 3a3d1282
No related branches found
No related tags found
No related merge requests found
This diff is collapsed.
data/layer2D.png

17.5 KiB

data/layer3D.tiff

161 KiB

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from scipy.ndimage import gaussian_filter
from skimage.io import imread
from ipywidgets import interact, interactive, fixed, interact_manual, IntSlider, Button
import ipywidgets as widgets
from ipycanvas import MultiCanvas
from slgbuilder import GraphObject, MaxflowBuilder
def generate_synthetic_data(n_layers, smoothness, min_distance, blurring):
std = 30
size = 256
sigma = smoothness
line_locs = []
n_unused_layers = 0
for i in range(n_layers-1):
if i == 0:
line_locs.append(np.random.randint(size))
else:
possible_indices = np.arange(size)
for j in range(len(line_locs)):
possible_indices = np.setdiff1d(possible_indices, np.arange(line_locs[j] - min_distance, line_locs[j] + min_distance))
if len(possible_indices) < 1:
n_layers = n_layers - 1
else:
line_locs.append(possible_indices[np.random.randint(len(possible_indices))])
line_locs = np.sort(line_locs)
boundary_lines = [np.zeros(size)]
for i in range(n_layers-1):
mean = line_locs[i]
boundary_line = np.random.normal(loc=mean, scale=std, size=(size))
boundary_line = gaussian_filter(boundary_line, sigma=sigma)
boundary_lines.append(boundary_line)
synthetic_data = np.zeros((size, size))
ground_truth = np.zeros((size, size))
for i in range(len(boundary_lines)):
xx, yy = np.meshgrid(np.arange(size), np.arange(size), indexing='ij')
if i == 0:
layer_region = (xx <= boundary_lines[i+1]).astype(int)
elif i < len(boundary_lines) - 1:
layer_region = (xx > boundary_lines[i]).astype(int) * (xx <= boundary_lines[i+1]).astype(int)
else:
layer_region = (xx > boundary_lines[i]).astype(int)
ground_truth += (xx < boundary_lines[i]).astype(int)
synthetic_data = synthetic_data * (1 - layer_region)
loc = 112 + np.random.rand() * 32
scale = 4
synthetic_data += layer_region * np.random.normal(loc=loc, scale=scale, size=(size,size))
loc = 0
scale = 4
synthetic_data = gaussian_filter(synthetic_data, blurring) + np.random.normal(loc=loc, scale=scale, size=(size,size))
f, ax = plt.subplots(1,3,figsize=(16,6))
ax[0].set_title('Synthetic data')
ax[0].imshow(synthetic_data, cmap='gray', vmin=0, vmax=255)
ax[1].set_title('Ground truth')
ax[1].imshow(ground_truth)
ax[2].set_title('Synthetic data w/ layers')
ax[2].imshow(synthetic_data, cmap='gray', vmin=0, vmax=255)
ax[2].set_xlim(0,size)
ax[2].set_ylim(size,0)
for line in boundary_lines:
ax[2].plot(line)
plt.show()
return synthetic_data.astype(np.int32), ground_truth
def create_synthetic_data_widget():
return interactive(generate_synthetic_data,
n_layers=IntSlider(value=2, min=2, max=6, step=1, continuous_update=False, description='# of layers'),
smoothness=IntSlider(value=20, min=1, max=50, step=1, continuous_update=False, description='Smoothness'),
min_distance=IntSlider(value=10, min=1, max=150, step=1, continuous_update=False, description='Min distance'),
blurring=IntSlider(value=2, min=0, max=20, step=1, continuous_update=False, description='Blurring'))
def estimate_mean(I, x, y, width, height):
mean = np.mean(I[y:y+height,x:x+width])
rect = patches.Rectangle((x,y),width,height,linewidth=1,edgecolor='r',facecolor='none')
f, ax = plt.subplots(1,1,figsize=(6,6))
ax.set_title(f'Mean: {mean:.04f}')
ax.imshow(I, cmap='gray', vmin=0, vmax=255)
ax.add_patch(rect)
return mean
def create_mean_estimator_widget(I):
return interactive(estimate_mean,
I=fixed(I),
x=IntSlider(value=0, min=0, max=256, step=1, continuous_update=False, description='X'),
y=IntSlider(value=0, min=0, max=256, step=1, continuous_update=False, description='Y'),
width=IntSlider(value=20, min=1, max=256, step=1, continuous_update=False, description='Width'),
height=IntSlider(value=20, min=1, max=256, step=1, continuous_update=False, description='Height'))
def display_results(synthetic_data, segmentations, segmentation_lines):
# Draw results.
f,ax = plt.subplots(1,3,figsize=(16,6))
ax[0].imshow(synthetic_data, cmap='gray', vmin=0, vmax=255)
ax[1].imshow(np.sum(segmentations, axis=0))
ax[2].imshow(synthetic_data, cmap='gray', vmin=0, vmax=255)
for line in segmentation_lines:
ax[2].plot(line)
plt.show()
class MeanEstimatorTool:
def __init__(self, background_image):
self.drawing = False
self.ix = None
self.iy = None
self.background_image = background_image
self.line_width = 20
self.radius = self.line_width / 2
self.canvas = MultiCanvas(2, width=background_image.shape[1], height=background_image.shape[0])
self.canvas[1].sync_image_data = True
self.canvas[0].put_image_data(background_image, 0, 0)
self.canvas[1].on_mouse_down(self._on_mouse_down)
self.canvas[1].on_mouse_move(self._on_mouse_move)
self.canvas[1].on_mouse_up(self._on_mouse_up)
self.canvas[1].stroke_style = '#00FF00'
self.canvas[1].fill_style = '#00FF00'
self.canvas[1].global_alpha = 1
brush_slider = interactive(self.update_brush_size,
brush_size=IntSlider(value=20,
min=2,
max=20,
step=1,
continuous_update=True,
description='Brush size'))
clear_button = Button(description='Clear')
clear_button.on_click(self.clear)
compute_button = Button(description='Calculate mean')
compute_button.on_click(self.compute_mean)
display(brush_slider)
display(compute_button)
display(clear_button)
display(self.canvas)
def update_brush_size(self, brush_size):
self.line_width = brush_size
self.radius = self.line_width / 2
self.canvas[1].line_width = self.line_width
def compute_mean(self, b):
mask = (np.mean((self.canvas[1].get_image_data()),axis=-1) > 0)
mean = np.sum(self.background_image * mask) / np.sum(mask)
print(f'{mean:.04f}', end='\r')
return mean
def clear(self, b):
self.canvas[1].clear()
def _on_mouse_down(self, x, y):
self.drawing = True
self.canvas[1].fill_circle(x, y, self.radius)
self.ix = x
self.iy = y
def _on_mouse_move(self, x, y):
if self.drawing:
self.canvas[1].stroke_line(self.ix, self.iy, x, y)
self.canvas[1].fill_circle(x, y, self.radius)
self.ix = x
self.iy = y
def _on_mouse_up(self, x, y):
self.drawing = False
self.ix = x
self.iy = y
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment