Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
Layered Surfaces
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
QIM
Tutorials
Layered Surfaces
Commits
d383d78a
Commit
d383d78a
authored
4 years ago
by
RTuxen
Browse files
Options
Downloads
Patches
Plain Diff
Ignore .py help-files
parent
69fa9f15
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
notebooks/NerveSegmentation2D.py
+0
-251
0 additions, 251 deletions
notebooks/NerveSegmentation2D.py
notebooks/NerveSegmentation3D.py
+0
-209
0 additions, 209 deletions
notebooks/NerveSegmentation3D.py
with
0 additions
and
460 deletions
notebooks/NerveSegmentation2D.py
deleted
100644 → 0
+
0
−
251
View file @
69fa9f15
"""
This script does the exact same as
'
NerveSegmenetation2D.ipynb
'
"""
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
skimage.io
import
imread
from
scipy.ndimage.interpolation
import
map_coordinates
from
slgbuilder
import
GraphObject
,
MaxflowBuilder
def
draw_segmentations
(
data
,
helper
):
"""
Draw all segmentations for objects in the helper on top of the data.
"""
# Create figure.
plt
.
figure
(
figsize
=
(
10
,
10
))
plt
.
imshow
(
data
,
cmap
=
'
gray
'
)
plt
.
xlim
([
0
,
data
.
shape
[
1
]
-
1
])
plt
.
ylim
([
data
.
shape
[
0
]
-
1
,
0
])
# Draw segmentation lines.
for
i
,
obj
in
enumerate
(
helper
.
objects
):
# Get segmentation.
segment
=
helper
.
get_labels
(
obj
)
# Create line.
line
=
np
.
count_nonzero
(
segment
,
axis
=
0
)
# Get actual points.
point_indices
=
tuple
(
np
.
asarray
([
line
-
1
,
np
.
arange
(
len
(
line
))]))
points
=
obj
.
sample_points
[
point_indices
]
# Close line.
points
=
np
.
append
(
points
,
points
[:
1
],
axis
=
0
)
# Plot points.
plt
.
plot
(
points
[...,
1
],
points
[...,
0
])
plt
.
show
()
def
unfold_image
(
img
,
center
,
max_dists
=
None
,
r_min
=
1
,
r_max
=
20
,
angles
=
30
,
steps
=
15
):
"""
Unfolds around a point in an image with radial sampling
"""
# Sampling angles and radii.
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
angles
,
endpoint
=
False
)
distances
=
np
.
linspace
(
r_min
,
r_max
,
steps
,
endpoint
=
True
)
if
max_dists
is
not
None
:
max_dists
.
append
(
np
.
max
(
distances
))
# Get angles.
angles_cos
=
np
.
cos
(
angles
)
angles_sin
=
np
.
sin
(
angles
)
# Calculate points positions.
x_pos
=
center
[
0
]
+
np
.
outer
(
angles_cos
,
distances
)
y_pos
=
center
[
1
]
+
np
.
outer
(
angles_sin
,
distances
)
# Create list of sampling points.
sampling_points
=
np
.
array
([
x_pos
,
y_pos
]).
transpose
()
sampling_shape
=
sampling_points
.
shape
sampling_points_flat
=
sampling_points
.
reshape
((
-
1
,
2
))
# Sample from image.
samples
=
map_coordinates
(
img
,
sampling_points_flat
.
transpose
(),
mode
=
'
nearest
'
)
samples
=
samples
.
reshape
(
sampling_shape
[:
2
])
return
samples
,
sampling_points
#%%
in_dir
=
'
data/
'
data
=
imread
(
in_dir
+
'
nerves2D.png
'
).
astype
(
np
.
int32
)
# Get centers
path
=
in_dir
+
'
nerveCenters.png
'
centers
=
imread
(
path
)[:,:,
0
]
centers_small
=
np
.
transpose
(
np
.
where
(
centers
==
1
))
centers_large
=
np
.
transpose
(
np
.
where
(
centers
==
2
))
# Show image with centers.
plt
.
imshow
(
data
,
cmap
=
'
gray
'
)
plt
.
scatter
(
centers_small
[...,
1
],
centers_small
[...,
0
],
color
=
'
red
'
,
s
=
6
)
plt
.
scatter
(
centers_large
[...,
1
],
centers_large
[...,
0
],
color
=
'
blue
'
,
s
=
6
)
plt
.
show
()
print
(
f
'
Number of objects:
{
len
(
centers_small
)
+
len
(
centers_large
)
}
'
)
#%% Example of radial unfolding
samples
,
sample_points
=
unfold_image
(
data
,
centers_small
[
4
],
r_max
=
20
,
angles
=
30
,
steps
=
30
)
plt
.
figure
(
figsize
=
(
13
,
5
))
ax
=
plt
.
subplot
(
1
,
3
,
1
,
title
=
'
Sample positions in data
'
)
ax
.
imshow
(
data
,
cmap
=
'
gray
'
)
ax
.
scatter
(
sample_points
[...,
1
],
sample_points
[...,
0
],
s
=
2
,
color
=
'
red
'
)
ax
=
plt
.
subplot
(
1
,
3
,
2
,
title
=
'
Sample positions and intensities
'
)
ax
.
scatter
(
sample_points
[...,
1
],
sample_points
[...,
0
],
c
=
samples
,
cmap
=
'
gray
'
)
ax
=
plt
.
subplot
(
1
,
3
,
3
,
title
=
'
Unfolded image
'
)
ax
.
imshow
(
samples
,
cmap
=
'
gray
'
)
plt
.
show
()
#%% Detect layers in object
# Create gradient-based objects.
diff_samples
=
np
.
diff
(
samples
,
axis
=
0
)
outer_nerve
=
GraphObject
(
255
-
diff_samples
)
inner_nerve
=
GraphObject
(
diff_samples
)
f
,
ax
=
plt
.
subplots
(
1
,
2
,
figsize
=
(
10
,
5
))
ax
[
0
].
imshow
(
outer_nerve
.
data
,
cmap
=
'
gray
'
)
ax
[
0
].
set_title
(
'
Outer never data
'
)
ax
[
1
].
imshow
(
inner_nerve
.
data
,
cmap
=
'
gray
'
)
ax
[
1
].
set_title
(
'
Inner never data
'
)
plt
.
show
()
#%% Segment one sample
helper
=
MaxflowBuilder
()
helper
.
add_objects
([
outer_nerve
,
inner_nerve
])
helper
.
add_layered_boundary_cost
()
helper
.
add_layered_smoothness
(
delta
=
2
)
helper
.
add_layered_containment
(
outer_nerve
,
inner_nerve
,
min_margin
=
3
,
max_margin
=
6
)
flow
=
helper
.
solve
()
print
(
'
Maximum flow/minimum energy:
'
,
flow
)
segmentations
=
[
helper
.
get_labels
(
o
).
astype
(
np
.
int32
)
for
o
in
helper
.
objects
]
segmentation_lines
=
[
np
.
count_nonzero
(
s
,
axis
=
0
)
-
0.5
for
s
in
segmentations
]
f
,
ax
=
plt
.
subplots
(
1
,
3
,
figsize
=
(
10
,
10
))
ax
[
0
].
imshow
(
samples
,
cmap
=
'
gray
'
)
ax
[
1
].
imshow
(
np
.
sum
(
segmentations
,
axis
=
0
))
ax
[
2
].
imshow
(
samples
,
cmap
=
'
gray
'
)
for
line
in
segmentation_lines
:
ax
[
2
].
plot
(
line
)
plt
.
show
()
#%% Multiple object
# Lists for storing nerve objects.
nerve_samples
=
[]
outer_nerves
=
[]
inner_nerves
=
[]
# For each center, create an inner and outer never.
for
center
in
centers_small
:
samples
,
sample_points
=
unfold_image
(
data
,
center
,
r_max
=
35
,
angles
=
40
,
steps
=
30
)
nerve_samples
.
append
(
samples
)
# Create outer and inner nerve objects.
diff_samples
=
np
.
diff
(
samples
,
axis
=
0
)
diff_sample_points
=
sample_points
[:
-
1
]
outer_nerves
.
append
(
GraphObject
(
255
-
diff_samples
,
diff_sample_points
))
inner_nerves
.
append
(
GraphObject
(
diff_samples
,
diff_sample_points
))
for
center
in
centers_large
:
samples
,
sample_points
=
unfold_image
(
data
,
center
,
r_max
=
60
,
angles
=
40
,
steps
=
30
)
nerve_samples
.
append
(
samples
)
# Create outer and inner nerve objects.
diff_samples
=
np
.
diff
(
samples
,
axis
=
0
)
diff_sample_points
=
sample_points
[:
-
1
]
outer_nerves
.
append
(
GraphObject
(
255
-
diff_samples
,
diff_sample_points
))
inner_nerves
.
append
(
GraphObject
(
diff_samples
,
diff_sample_points
))
helper
=
MaxflowBuilder
()
helper
.
add_objects
(
outer_nerves
+
inner_nerves
)
helper
.
add_layered_boundary_cost
()
helper
.
add_layered_smoothness
(
delta
=
2
)
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
helper
.
add_layered_containment
(
outer_nerve
,
inner_nerve
,
min_margin
=
3
,
max_margin
=
6
)
flow
=
helper
.
solve
()
print
(
'
Maximum flow/minimum energy:
'
,
flow
)
# Get segmentations.
segmentations
=
[]
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
segmentations
.
append
(
helper
.
get_labels
(
outer_nerve
))
segmentations
.
append
(
helper
.
get_labels
(
inner_nerve
))
segmentation_lines
=
[
np
.
count_nonzero
(
s
,
axis
=
0
)
-
0.5
for
s
in
segmentations
]
# Draw segmentations.
plt
.
figure
(
figsize
=
(
15
,
5
))
for
i
,
samples
in
enumerate
(
nerve_samples
):
ax
=
plt
.
subplot
(
3
,
len
(
nerve_samples
)
//
3
+
1
,
i
+
1
)
ax
.
imshow
(
samples
,
cmap
=
'
gray
'
)
ax
.
plot
(
segmentation_lines
[
2
*
i
])
ax
.
plot
(
segmentation_lines
[
2
*
i
+
1
])
plt
.
show
()
draw_segmentations
(
data
,
helper
)
#%% Multi-object exclusion
from
slgbuilder
import
QPBOBuilder
helper
=
QPBOBuilder
()
helper
.
add_objects
(
outer_nerves
+
inner_nerves
)
helper
.
add_layered_boundary_cost
()
helper
.
add_layered_smoothness
(
delta
=
2
)
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
helper
.
add_layered_containment
(
outer_nerve
,
inner_nerve
,
min_margin
=
3
,
max_margin
=
6
)
twice_flow
=
helper
.
solve
()
print
(
'
Two times maximum flow/minimum energy:
'
,
twice_flow
)
if
2
*
flow
==
twice_flow
:
print
(
'
QPBO flow is exactly twice the Maxflow flow.
'
)
else
:
print
(
'
Something is wrong...
'
)
# Add exclusion constraints between all pairs of outer nerves.
for
i
in
range
(
len
(
outer_nerves
)):
for
j
in
range
(
i
+
1
,
len
(
outer_nerves
)):
helper
.
add_layered_exclusion
(
outer_nerves
[
i
],
outer_nerves
[
j
],
margin
=
3
)
twice_flow
=
helper
.
solve
()
print
(
'
Two times maximum flow/minimum energy:
'
,
twice_flow
)
draw_segmentations
(
data
,
helper
)
#%% Region cost
# mu_inside = 90
# mu_ring = 70
# mu_outside = 90
# beta = 0.1
# for samples, outer_nerve, inner_nerve in zip(nerve_samples, outer_nerves, inner_nerves):
# samples = samples[:-1]
# inside_cost = np.abs(samples - mu_inside) * beta
# ring_cost = np.abs(samples - mu_ring) * beta
# outside_cost = np.abs(samples - mu_outside) * beta
# helper.add_layered_region_cost(inner_nerve, ring_cost, inside_cost)
# helper.add_layered_region_cost(outer_nerve, outside_cost, ring_cost)
# twice_flow = helper.solve()
# print('Two times maximum flow/minimum energy:', twice_flow)
# draw_segmentations(data, helper)
This diff is collapsed.
Click to expand it.
notebooks/NerveSegmentation3D.py
deleted
100644 → 0
+
0
−
209
View file @
69fa9f15
"""
This script does the exact same as
'
NerveSegmenetation3D.ipynb
'
"""
import
os
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
skimage.io
import
imread
from
scipy.ndimage.interpolation
import
map_coordinates
from
qimtools
import
visualization
,
inspection
,
io
from
slgbuilder
import
GraphObject
,
MaxflowBuilder
def
draw_segmentations
(
data
,
helper
,
layer
=
0
):
"""
Draw all segmentations for objects in the helper on top of the data.
"""
if
data
.
ndim
!=
3
:
raise
ValueError
(
'
Data should be in three dimensions
'
)
K
=
(
len
(
helper
.
objects
)
//
vol
.
shape
[
-
1
])
//
2
# Create figure.
plt
.
figure
(
figsize
=
(
10
,
10
))
plt
.
imshow
(
data
[...,
layer
],
cmap
=
'
gray
'
)
plt
.
xlim
([
0
,
data
[...,
layer
].
shape
[
1
]
-
1
])
plt
.
ylim
([
data
[...,
layer
].
shape
[
0
]
-
1
,
0
])
# Draw segmentation lines.
for
i
,
obj
in
enumerate
(
helper
.
objects
):
if
(
i
>=
layer
*
K
and
i
<
(
layer
+
1
)
*
K
)
or
(
i
>=
(
vol
.
shape
[
-
1
]
+
layer
)
*
K
and
i
<
(
vol
.
shape
[
-
1
]
+
layer
+
1
)
*
K
):
# Get segmentation.
segment
=
helper
.
get_labels
(
obj
)
# Create line.
line
=
np
.
count_nonzero
(
segment
,
axis
=
0
)
# Get actual points.
point_indices
=
tuple
(
np
.
asarray
([
line
-
1
,
np
.
arange
(
len
(
line
))]))
points
=
obj
.
sample_points
[
point_indices
]
# Close line.
points
=
np
.
append
(
points
,
points
[:
1
],
axis
=
0
)
# Plot points.
plt
.
plot
(
points
[...,
1
],
points
[...,
0
])
plt
.
show
()
def
unfold_image
(
img
,
center
,
max_dists
=
None
,
r_min
=
1
,
r_max
=
20
,
angles
=
30
,
steps
=
15
):
# Sampling angles and radii.
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
angles
,
endpoint
=
False
)
distances
=
np
.
linspace
(
r_min
,
r_max
,
steps
,
endpoint
=
True
)
if
max_dists
is
not
None
:
max_dists
.
append
(
np
.
max
(
distances
))
# Get angles.
angles_cos
=
np
.
cos
(
angles
)
angles_sin
=
np
.
sin
(
angles
)
# Calculate points positions.
x_pos
=
center
[
0
]
+
np
.
outer
(
angles_cos
,
distances
)
y_pos
=
center
[
1
]
+
np
.
outer
(
angles_sin
,
distances
)
# Create list of sampling points.
sampling_points
=
np
.
array
([
x_pos
,
y_pos
]).
transpose
()
sampling_shape
=
sampling_points
.
shape
sampling_points_flat
=
sampling_points
.
reshape
((
-
1
,
2
))
# Sample from image.
samples
=
map_coordinates
(
img
,
sampling_points_flat
.
transpose
(),
mode
=
'
nearest
'
)
samples
=
samples
.
reshape
(
sampling_shape
[:
2
])
return
samples
,
sampling_points
#%%
in_dir
=
'
data/
'
Vol_path
=
os
.
path
.
join
(
in_dir
,
'
nerves3D.tiff
'
)
# Load the data
vol
=
io
.
Volume
(
Vol_path
)
# Convert the stack of 2D slices to a 3D volume
vol
=
vol
.
concatenate
().
astype
(
np
.
int32
)
vol
=
np
.
transpose
(
vol
,(
1
,
2
,
0
))
# visualization.show_vol( vol, axis=2 )
#%%
# Get centers
path
=
in_dir
+
'
nerveCenters.png
'
centers
=
imread
(
path
)[:,:,
0
]
centers_small
=
np
.
transpose
(
np
.
where
(
centers
==
1
))
centers_large
=
np
.
transpose
(
np
.
where
(
centers
==
2
))
# Show volume slice with centers.
plt
.
imshow
(
vol
[...,
0
],
cmap
=
'
gray
'
)
plt
.
scatter
(
centers_small
[...,
1
],
centers_small
[...,
0
],
color
=
'
red
'
,
s
=
6
)
plt
.
scatter
(
centers_large
[...,
1
],
centers_large
[...,
0
],
color
=
'
blue
'
,
s
=
6
)
plt
.
show
()
print
(
f
'
Number of objects:
{
len
(
centers_small
)
+
len
(
centers_large
)
}
'
)
#%%
nerve_samples
=
[]
outer_nerves
=
[]
inner_nerves
=
[]
layers
=
[]
# For each center, create an inner and outer never.
for
i
in
range
(
vol
.
shape
[
-
1
]):
for
center
in
centers_small
:
samples
,
sample_points
=
unfold_image
(
vol
[...,
i
],
center
,
r_max
=
40
,
angles
=
40
,
steps
=
30
)
nerve_samples
.
append
(
samples
)
# Create outer and inner nerve objects.
diff_samples
=
np
.
diff
(
samples
,
axis
=
0
)
diff_sample_points
=
sample_points
[:
-
1
]
outer_nerves
.
append
(
GraphObject
(
255
-
diff_samples
,
diff_sample_points
))
inner_nerves
.
append
(
GraphObject
(
diff_samples
,
diff_sample_points
))
for
center
in
centers_large
:
samples
,
sample_points
=
unfold_image
(
vol
[...,
i
],
center
,
r_max
=
60
,
angles
=
40
,
steps
=
30
)
nerve_samples
.
append
(
samples
)
# Create outer and inner nerve objects.
diff_samples
=
np
.
diff
(
samples
,
axis
=
0
)
diff_sample_points
=
sample_points
[:
-
1
]
outer_nerves
.
append
(
GraphObject
(
255
-
diff_samples
,
diff_sample_points
))
inner_nerves
.
append
(
GraphObject
(
diff_samples
,
diff_sample_points
))
helper
=
MaxflowBuilder
()
helper
.
add_objects
(
outer_nerves
+
inner_nerves
)
helper
.
add_layered_boundary_cost
()
helper
.
add_layered_smoothness
(
delta
=
2
)
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
helper
.
add_layered_containment
(
outer_nerve
,
inner_nerve
,
min_margin
=
3
,
max_margin
=
6
)
flow
=
helper
.
solve
()
print
(
'
Maximum flow/minimum energy:
'
,
flow
)
# Get segmentations.
segmentations
=
[]
# for i in range(vol.shape[0]):
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
segmentations
.
append
(
helper
.
get_labels
(
outer_nerve
))
segmentations
.
append
(
helper
.
get_labels
(
inner_nerve
))
segmentation_lines
=
[
np
.
count_nonzero
(
s
,
axis
=
0
)
-
0.5
for
s
in
segmentations
]
# plt.figure(figsize=(15, 5))
# for i, samples in enumerate(nerve_samples):
# ax = plt.subplot(3, len(nerve_samples) // 3 + 1, i + 1)
# ax.imshow(samples, cmap='gray')
# ax.plot(segmentation_lines[2*i])
# ax.plot(segmentation_lines[2*i + 1])
# plt.show()
draw_segmentations
(
vol
,
helper
,
layer
=
0
)
#%% Multi-object exclusion
from
slgbuilder
import
QPBOBuilder
helper
=
QPBOBuilder
()
helper
.
add_objects
(
outer_nerves
+
inner_nerves
)
helper
.
add_layered_boundary_cost
()
helper
.
add_layered_smoothness
(
delta
=
2
)
for
outer_nerve
,
inner_nerve
in
zip
(
outer_nerves
,
inner_nerves
):
helper
.
add_layered_containment
(
outer_nerve
,
inner_nerve
,
min_margin
=
3
,
max_margin
=
6
)
twice_flow
=
helper
.
solve
()
print
(
'
Two times maximum flow/minimum energy:
'
,
twice_flow
)
if
2
*
flow
==
twice_flow
:
print
(
'
QPBO flow is exactly twice the Maxflow flow.
'
)
else
:
print
(
'
Something is wrong...
'
)
# Add exclusion constraints between all pairs of outer nerves.
interval
=
len
(
outer_nerves
)
//
vol
.
shape
[
-
1
]
for
i
in
range
(
vol
.
shape
[
-
1
]):
for
j
in
range
(
len
(
outer_nerves
)
//
vol
.
shape
[
-
1
]):
for
k
in
range
(
j
+
1
,
len
(
outer_nerves
)
//
vol
.
shape
[
-
1
]):
helper
.
add_layered_exclusion
(
outer_nerves
[
interval
*
i
+
j
],
outer_nerves
[
interval
*
i
+
k
],
margin
=
3
)
twice_flow
=
helper
.
solve
()
print
(
'
Two times maximum flow/minimum energy:
'
,
twice_flow
)
draw_segmentations
(
vol
,
helper
,
layer
=
9
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment