- Read the image using [`skimage.io.imread`](https://scikit-image.org/docs/stable/api/skimage.io.html#skimage.io.imread)
- For convolution use `scipy.ndimage.convolve`
- For convolution use [`scipy.ndimage.convolve`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html)
- After completing the exercise test agains `scipy.ndimage.gaussian_filter`
- After completing the exercise test agains [`scipy.ndimage.gaussian_filter`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html)
# Exercise 1.1.3 Curve smoothing
# Exercise 1.1.3 Curve smoothing
- Make the matrix using `scipy.linalg.circulant`
- Make the matrix using [`scipy.linalg.circulant`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html)
- For matrix-vector multiplication you can use a dedicated function from `numpy` or `@` operator
- For matrix-vector multiplication you can use [`numpy.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html) or the shorthand operator `@` (explained at the bottom of page dedicated to `matmul`).
# Exericse 1.1.6 Working with volumetric image
# Exericse 1.1.6 Working with volumetric image
- To get hold of all image in a folder, use `sorted(os.listdir(\<FOLDER NAME\>))`
- To get hold of all image in a certain folder, use `sorted(os.listdir(\<FOLDER NAME\>))`
# Exercise 1.1.7 PCA of multispectral image
# Exercise 1.1.7 PCA of multispectral image
- For eigendecomposition use ` np.linalg.eig`
- For eigendecomposition use `numpy.linalg.eig`
- You can compare your PCA agains the existing implementation `sklearn.decomposition.PCA`
- You can compare your PCA against the existing implementation `sklearn.decomposition.PCA`
# Exercise 1.1.8 Bacterial growth from movie frames
# Exercise 1.1.8 Bacterial growth from movie frames
- To read the movie as a list of images, use following code block
- To read the movie as a list of images, use following code block