Skip to content
Snippets Groups Projects
Commit fda1d164 authored by Vedrana Andersen Dahl's avatar Vedrana Andersen Dahl
Browse files

added chapter 7

parent 7c571167
Branches
No related tags found
No related merge requests found
Showing
with 2162 additions and 0 deletions
#include <math.h>
#include "mex.h"
#include "graph.h"
#include <vector>
void
mexFunction(int nout, mxArray *out[],
int nin, const mxArray *in[])
{
if (nin != 3)
mexErrMsgTxt("Three arguments are required (nNodes,TerminalWeights,EdgeWeights)") ;
if (nout > 2)
mexErrMsgTxt("Too many output arguments.");
int nNodes = (int) *mxGetPr(in[0]);
const int* twDim = mxGetDimensions(in[1]) ;
int twRows = twDim[0] ;
int twCols = twDim[1] ;
double* twPt = mxGetPr(in[1]) ;
if(twCols!=3)
mexErrMsgTxt("The Terminal Weight matix should have 3 columns, (Node,sink,source).");
const int* ewDim = mxGetDimensions(in[2]) ;
int ewRows = ewDim[0] ;
int ewCols = ewDim[1] ;
double* ewPt = mxGetPr(in[2]) ;
if(ewCols!=4)
mexErrMsgTxt("The Terminal Weight matix should have 4 columns, (From,To,Capacity,Rev_Capacity).");
typedef Graph<double,double,double> GraphType;
GraphType G(static_cast<int>(nNodes), static_cast<int>(ewRows+twRows));
G.add_node(nNodes);
for(int cTw=0;cTw<twRows;cTw++)
{
//Test for nodes in range
int node=(int)twPt[cTw]-1;
if(node<0 || node>=nNodes)
mexErrMsgTxt("index out of bounds in TerminalWeight Matrix.");
G.add_tweights(node,twPt[cTw+twRows],twPt[cTw+2*twRows]);
}
for(int cEw=0;cEw<ewRows;cEw++)
{
//Test for nodes in range
int From=(int)ewPt[cEw]-1;
int To=(int)ewPt[cEw+ewRows]-1;
if(From<0 || From>=nNodes)
mexErrMsgTxt("From index out of bounds in Edge Weight Matrix.");
if(To<0 || To>=nNodes)
mexErrMsgTxt("To index out of bounds in Edge Weight Matrix.");
G.add_edge(From,To,ewPt[cEw+2*ewRows],ewPt[cEw+3*ewRows]);
}
double flow=G.maxflow();
std::vector<int> SourceCut;
for(int cNode=0;cNode<nNodes;cNode++)
{
if(G.what_segment(cNode)== GraphType::SOURCE)
SourceCut.push_back(cNode+1);
}
out[0] = mxCreateDoubleMatrix(SourceCut.size(), 1, mxREAL) ;
double* pOut=mxGetPr(out[0]);
std::vector<int>::const_iterator Itt(SourceCut.begin());
for(;Itt!=SourceCut.end();++Itt)
{
*pOut=*Itt;
++pOut;
}
if(nout==2)
{
out[1] = mxCreateDoubleMatrix(1, 1, mxREAL) ;
*mxGetPr(out[1])=flow;
}
}
\ No newline at end of file
File added
File added
File added
/* maxflow.cpp */
#include <stdio.h>
#include "graph.h"
#include "instances.inc"
/*
special constants for node->parent
*/
#define TERMINAL ( (arc *) 1 ) /* to terminal */
#define ORPHAN ( (arc *) 2 ) /* orphan */
#define INFINITE_D ((int)(((unsigned)-1)/2)) /* infinite distance to the terminal */
/***********************************************************************/
/*
Functions for processing active list.
i->next points to the next node in the list
(or to i, if i is the last node in the list).
If i->next is NULL iff i is not in the list.
There are two queues. Active nodes are added
to the end of the second queue and read from
the front of the first queue. If the first queue
is empty, it is replaced by the second queue
(and the second queue becomes empty).
*/
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_active(node *i)
{
if (!i->next)
{
/* it's not in the list yet */
if (queue_last[1]) queue_last[1] -> next = i;
else queue_first[1] = i;
queue_last[1] = i;
i -> next = i;
}
}
/*
Returns the next active node.
If it is connected to the sink, it stays in the list,
otherwise it is removed from the list
*/
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::node* Graph<captype,tcaptype,flowtype>::next_active()
{
node *i;
while ( 1 )
{
if (!(i=queue_first[0]))
{
queue_first[0] = i = queue_first[1];
queue_last[0] = queue_last[1];
queue_first[1] = NULL;
queue_last[1] = NULL;
if (!i) return NULL;
}
/* remove it from the active list */
if (i->next == i) queue_first[0] = queue_last[0] = NULL;
else queue_first[0] = i -> next;
i -> next = NULL;
/* a node in the list is active iff it has a parent */
if (i->parent) return i;
}
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_orphan_front(node *i)
{
nodeptr *np;
i -> parent = ORPHAN;
np = nodeptr_block -> New();
np -> ptr = i;
np -> next = orphan_first;
orphan_first = np;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_orphan_rear(node *i)
{
nodeptr *np;
i -> parent = ORPHAN;
np = nodeptr_block -> New();
np -> ptr = i;
if (orphan_last) orphan_last -> next = np;
else orphan_first = np;
orphan_last = np;
np -> next = NULL;
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::add_to_changed_list(node *i)
{
if (changed_list && !i->is_in_changed_list)
{
node_id* ptr = changed_list->New();
*ptr = (node_id)(i - nodes);
i->is_in_changed_list = true;
}
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::maxflow_init()
{
node *i;
queue_first[0] = queue_last[0] = NULL;
queue_first[1] = queue_last[1] = NULL;
orphan_first = NULL;
TIME = 0;
for (i=nodes; i<node_last; i++)
{
i -> next = NULL;
i -> is_marked = 0;
i -> is_in_changed_list = 0;
i -> TS = TIME;
if (i->tr_cap > 0)
{
/* i is connected to the source */
i -> is_sink = 0;
i -> parent = TERMINAL;
set_active(i);
i -> DIST = 1;
}
else if (i->tr_cap < 0)
{
/* i is connected to the sink */
i -> is_sink = 1;
i -> parent = TERMINAL;
set_active(i);
i -> DIST = 1;
}
else
{
i -> parent = NULL;
}
}
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::maxflow_reuse_trees_init()
{
node* i;
node* j;
node* queue = queue_first[1];
arc* a;
nodeptr* np;
queue_first[0] = queue_last[0] = NULL;
queue_first[1] = queue_last[1] = NULL;
orphan_first = orphan_last = NULL;
TIME ++;
while ((i=queue))
{
queue = i->next;
if (queue == i) queue = NULL;
i->next = NULL;
i->is_marked = 0;
set_active(i);
if (i->tr_cap == 0)
{
if (i->parent) set_orphan_rear(i);
continue;
}
if (i->tr_cap > 0)
{
if (!i->parent || i->is_sink)
{
i->is_sink = 0;
for (a=i->first; a; a=a->next)
{
j = a->head;
if (!j->is_marked)
{
if (j->parent == a->sister) set_orphan_rear(j);
if (j->parent && j->is_sink && a->r_cap > 0) set_active(j);
}
}
add_to_changed_list(i);
}
}
else
{
if (!i->parent || !i->is_sink)
{
i->is_sink = 1;
for (a=i->first; a; a=a->next)
{
j = a->head;
if (!j->is_marked)
{
if (j->parent == a->sister) set_orphan_rear(j);
if (j->parent && !j->is_sink && a->sister->r_cap > 0) set_active(j);
}
}
add_to_changed_list(i);
}
}
i->parent = TERMINAL;
i -> TS = TIME;
i -> DIST = 1;
}
//test_consistency();
/* adoption */
while ((np=orphan_first))
{
orphan_first = np -> next;
i = np -> ptr;
nodeptr_block -> Delete(np);
if (!orphan_first) orphan_last = NULL;
if (i->is_sink) process_sink_orphan(i);
else process_source_orphan(i);
}
/* adoption end */
//test_consistency();
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::augment(arc *middle_arc)
{
node *i;
arc *a;
tcaptype bottleneck;
/* 1. Finding bottleneck capacity */
/* 1a - the source tree */
bottleneck = middle_arc -> r_cap;
for (i=middle_arc->sister->head; ; i=a->head)
{
a = i -> parent;
if (a == TERMINAL) break;
if (bottleneck > a->sister->r_cap) bottleneck = a -> sister -> r_cap;
}
if (bottleneck > i->tr_cap) bottleneck = i -> tr_cap;
/* 1b - the sink tree */
for (i=middle_arc->head; ; i=a->head)
{
a = i -> parent;
if (a == TERMINAL) break;
if (bottleneck > a->r_cap) bottleneck = a -> r_cap;
}
if (bottleneck > - i->tr_cap) bottleneck = - i -> tr_cap;
/* 2. Augmenting */
/* 2a - the source tree */
middle_arc -> sister -> r_cap += bottleneck;
middle_arc -> r_cap -= bottleneck;
for (i=middle_arc->sister->head; ; i=a->head)
{
a = i -> parent;
if (a == TERMINAL) break;
a -> r_cap += bottleneck;
a -> sister -> r_cap -= bottleneck;
if (!a->sister->r_cap)
{
set_orphan_front(i); // add i to the beginning of the adoption list
}
}
i -> tr_cap -= bottleneck;
if (!i->tr_cap)
{
set_orphan_front(i); // add i to the beginning of the adoption list
}
/* 2b - the sink tree */
for (i=middle_arc->head; ; i=a->head)
{
a = i -> parent;
if (a == TERMINAL) break;
a -> sister -> r_cap += bottleneck;
a -> r_cap -= bottleneck;
if (!a->r_cap)
{
set_orphan_front(i); // add i to the beginning of the adoption list
}
}
i -> tr_cap += bottleneck;
if (!i->tr_cap)
{
set_orphan_front(i); // add i to the beginning of the adoption list
}
flow += bottleneck;
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::process_source_orphan(node *i)
{
node *j;
arc *a0, *a0_min = NULL, *a;
int d, d_min = INFINITE_D;
/* trying to find a new parent */
for (a0=i->first; a0; a0=a0->next)
if (a0->sister->r_cap)
{
j = a0 -> head;
if (!j->is_sink && (a=j->parent))
{
/* checking the origin of j */
d = 0;
while ( 1 )
{
if (j->TS == TIME)
{
d += j -> DIST;
break;
}
a = j -> parent;
d ++;
if (a==TERMINAL)
{
j -> TS = TIME;
j -> DIST = 1;
break;
}
if (a==ORPHAN) { d = INFINITE_D; break; }
j = a -> head;
}
if (d<INFINITE_D) /* j originates from the source - done */
{
if (d<d_min)
{
a0_min = a0;
d_min = d;
}
/* set marks along the path */
for (j=a0->head; j->TS!=TIME; j=j->parent->head)
{
j -> TS = TIME;
j -> DIST = d --;
}
}
}
}
if (i->parent = a0_min)
{
i -> TS = TIME;
i -> DIST = d_min + 1;
}
else
{
/* no parent is found */
add_to_changed_list(i);
/* process neighbors */
for (a0=i->first; a0; a0=a0->next)
{
j = a0 -> head;
if (!j->is_sink && (a=j->parent))
{
if (a0->sister->r_cap) set_active(j);
if (a!=TERMINAL && a!=ORPHAN && a->head==i)
{
set_orphan_rear(j); // add j to the end of the adoption list
}
}
}
}
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::process_sink_orphan(node *i)
{
node *j;
arc *a0, *a0_min = NULL, *a;
int d, d_min = INFINITE_D;
/* trying to find a new parent */
for (a0=i->first; a0; a0=a0->next)
if (a0->r_cap)
{
j = a0 -> head;
if (j->is_sink && (a=j->parent))
{
/* checking the origin of j */
d = 0;
while ( 1 )
{
if (j->TS == TIME)
{
d += j -> DIST;
break;
}
a = j -> parent;
d ++;
if (a==TERMINAL)
{
j -> TS = TIME;
j -> DIST = 1;
break;
}
if (a==ORPHAN) { d = INFINITE_D; break; }
j = a -> head;
}
if (d<INFINITE_D) /* j originates from the sink - done */
{
if (d<d_min)
{
a0_min = a0;
d_min = d;
}
/* set marks along the path */
for (j=a0->head; j->TS!=TIME; j=j->parent->head)
{
j -> TS = TIME;
j -> DIST = d --;
}
}
}
}
if (i->parent = a0_min)
{
i -> TS = TIME;
i -> DIST = d_min + 1;
}
else
{
/* no parent is found */
add_to_changed_list(i);
/* process neighbors */
for (a0=i->first; a0; a0=a0->next)
{
j = a0 -> head;
if (j->is_sink && (a=j->parent))
{
if (a0->r_cap) set_active(j);
if (a!=TERMINAL && a!=ORPHAN && a->head==i)
{
set_orphan_rear(j); // add j to the end of the adoption list
}
}
}
}
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
flowtype Graph<captype,tcaptype,flowtype>::maxflow(bool reuse_trees, Block<node_id>* _changed_list)
{
node *i, *j, *current_node = NULL;
arc *a;
nodeptr *np, *np_next;
if (!nodeptr_block)
{
nodeptr_block = new DBlock<nodeptr>(NODEPTR_BLOCK_SIZE, error_function);
}
changed_list = _changed_list;
if (maxflow_iteration == 0 && reuse_trees) { if (error_function) (*error_function)("reuse_trees cannot be used in the first call to maxflow()!"); exit(1); }
if (changed_list && !reuse_trees) { if (error_function) (*error_function)("changed_list cannot be used without reuse_trees!"); exit(1); }
if (reuse_trees) maxflow_reuse_trees_init();
else maxflow_init();
// main loop
while ( 1 )
{
// test_consistency(current_node);
if ((i=current_node))
{
i -> next = NULL; /* remove active flag */
if (!i->parent) i = NULL;
}
if (!i)
{
if (!(i = next_active())) break;
}
/* growth */
if (!i->is_sink)
{
/* grow source tree */
for (a=i->first; a; a=a->next)
if (a->r_cap)
{
j = a -> head;
if (!j->parent)
{
j -> is_sink = 0;
j -> parent = a -> sister;
j -> TS = i -> TS;
j -> DIST = i -> DIST + 1;
set_active(j);
add_to_changed_list(j);
}
else if (j->is_sink) break;
else if (j->TS <= i->TS &&
j->DIST > i->DIST)
{
/* heuristic - trying to make the distance from j to the source shorter */
j -> parent = a -> sister;
j -> TS = i -> TS;
j -> DIST = i -> DIST + 1;
}
}
}
else
{
/* grow sink tree */
for (a=i->first; a; a=a->next)
if (a->sister->r_cap)
{
j = a -> head;
if (!j->parent)
{
j -> is_sink = 1;
j -> parent = a -> sister;
j -> TS = i -> TS;
j -> DIST = i -> DIST + 1;
set_active(j);
add_to_changed_list(j);
}
else if (!j->is_sink) { a = a -> sister; break; }
else if (j->TS <= i->TS &&
j->DIST > i->DIST)
{
/* heuristic - trying to make the distance from j to the sink shorter */
j -> parent = a -> sister;
j -> TS = i -> TS;
j -> DIST = i -> DIST + 1;
}
}
}
TIME ++;
if (a)
{
i -> next = i; /* set active flag */
current_node = i;
/* augmentation */
augment(a);
/* augmentation end */
/* adoption */
while ((np=orphan_first))
{
np_next = np -> next;
np -> next = NULL;
while ((np=orphan_first))
{
orphan_first = np -> next;
i = np -> ptr;
nodeptr_block -> Delete(np);
if (!orphan_first) orphan_last = NULL;
if (i->is_sink) process_sink_orphan(i);
else process_source_orphan(i);
}
orphan_first = np_next;
}
/* adoption end */
}
else current_node = NULL;
}
// test_consistency();
if (!reuse_trees || (maxflow_iteration % 64) == 0)
{
delete nodeptr_block;
nodeptr_block = NULL;
}
maxflow_iteration ++;
return flow;
}
/***********************************************************************/
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::test_consistency(node* current_node)
{
node *i;
arc *a;
int r;
int num1 = 0, num2 = 0;
// test whether all nodes i with i->next!=NULL are indeed in the queue
for (i=nodes; i<node_last; i++)
{
if (i->next || i==current_node) num1 ++;
}
for (r=0; r<3; r++)
{
i = (r == 2) ? current_node : queue_first[r];
if (i)
for ( ; ; i=i->next)
{
num2 ++;
if (i->next == i)
{
if (r<2) assert(i == queue_last[r]);
else assert(i == current_node);
break;
}
}
}
assert(num1 == num2);
for (i=nodes; i<node_last; i++)
{
// test whether all edges in seach trees are non-saturated
if (i->parent == NULL) {}
else if (i->parent == ORPHAN) {}
else if (i->parent == TERMINAL)
{
if (!i->is_sink) assert(i->tr_cap > 0);
else assert(i->tr_cap < 0);
}
else
{
if (!i->is_sink) assert (i->parent->sister->r_cap > 0);
else assert (i->parent->r_cap > 0);
}
// test whether passive nodes in search trees have neighbors in
// a different tree through non-saturated edges
if (i->parent && !i->next)
{
if (!i->is_sink)
{
assert(i->tr_cap >= 0);
for (a=i->first; a; a=a->next)
{
if (a->r_cap > 0) assert(a->head->parent && !a->head->is_sink);
}
}
else
{
assert(i->tr_cap <= 0);
for (a=i->first; a; a=a->next)
{
if (a->sister->r_cap > 0) assert(a->head->parent && a->head->is_sink);
}
}
}
// test marking invariants
if (i->parent && i->parent!=ORPHAN && i->parent!=TERMINAL)
{
assert(i->TS <= i->parent->head->TS);
if (i->TS == i->parent->head->TS) assert(i->DIST > i->parent->head->DIST);
}
}
}
void Inst()
{
Graph<int,int,int> G(1,1);
G.maxflow();
}
\ No newline at end of file
/* block.h */
/*
Template classes Block and DBlock
Implement adding and deleting items of the same type in blocks.
If there there are many items then using Block or DBlock
is more efficient than using 'new' and 'delete' both in terms
of memory and time since
(1) On some systems there is some minimum amount of memory
that 'new' can allocate (e.g., 64), so if items are
small that a lot of memory is wasted.
(2) 'new' and 'delete' are designed for items of varying size.
If all items has the same size, then an algorithm for
adding and deleting can be made more efficient.
(3) All Block and DBlock functions are inline, so there are
no extra function calls.
Differences between Block and DBlock:
(1) DBlock allows both adding and deleting items,
whereas Block allows only adding items.
(2) Block has an additional operation of scanning
items added so far (in the order in which they were added).
(3) Block allows to allocate several consecutive
items at a time, whereas DBlock can add only a single item.
Note that no constructors or destructors are called for items.
Example usage for items of type 'MyType':
///////////////////////////////////////////////////
#include "block.h"
#define BLOCK_SIZE 1024
typedef struct { int a, b; } MyType;
MyType *ptr, *array[10000];
...
Block<MyType> *block = new Block<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
ptr = block -> New();
ptr -> a = ptr -> b = rand();
}
// reading items
for (ptr=block->ScanFirst(); ptr; ptr=block->ScanNext())
{
printf("%d %d\n", ptr->a, ptr->b);
}
delete block;
...
DBlock<MyType> *dblock = new DBlock<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
// deleting items
for (int i=0; i<sizeof(array); i+=2)
{
dblock -> Delete(array[i]);
}
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
delete dblock;
///////////////////////////////////////////////////
Note that DBlock deletes items by marking them as
empty (i.e., by adding them to the list of free items),
so that this memory could be used for subsequently
added items. Thus, at each moment the memory allocated
is determined by the maximum number of items allocated
simultaneously at earlier moments. All memory is
deallocated only when the destructor is called.
*/
#ifndef __BLOCK_H__
#define __BLOCK_H__
#include <stdlib.h>
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
template <class Type> class Block
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
Block(int size, void (*err_function)(char *) = NULL) { first = last = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~Block() { while (first) { block *next = first -> next; delete first; first = next; } }
/* Allocates 'num' consecutive items; returns pointer
to the first item. 'num' cannot be greater than the
block size since items must fit in one block */
Type *New(int num = 1)
{
Type *t;
if (!last || last->current + num > last->last)
{
if (last && last->next) last = last -> next;
else
{
block *next = (block *) new char [sizeof(block) + (block_size-1)*sizeof(Type)];
if (!next) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
if (last) last -> next = next;
else first = next;
last = next;
last -> current = & ( last -> data[0] );
last -> last = last -> current + block_size;
last -> next = NULL;
}
}
t = last -> current;
last -> current += num;
return t;
}
/* Returns the first item (or NULL, if no items were added) */
Type *ScanFirst()
{
for (scan_current_block=first; scan_current_block; scan_current_block = scan_current_block->next)
{
scan_current_data = & ( scan_current_block -> data[0] );
if (scan_current_data < scan_current_block -> current) return scan_current_data ++;
}
return NULL;
}
/* Returns the next item (or NULL, if all items have been read)
Can be called only if previous ScanFirst() or ScanNext()
call returned not NULL. */
Type *ScanNext()
{
while (scan_current_data >= scan_current_block -> current)
{
scan_current_block = scan_current_block -> next;
if (!scan_current_block) return NULL;
scan_current_data = & ( scan_current_block -> data[0] );
}
return scan_current_data ++;
}
/* Marks all elements as empty */
void Reset()
{
block *b;
if (!first) return;
for (b=first; ; b=b->next)
{
b -> current = & ( b -> data[0] );
if (b == last) break;
}
last = first;
}
/***********************************************************************/
private:
typedef struct block_st
{
Type *current, *last;
struct block_st *next;
Type data[1];
} block;
int block_size;
block *first;
block *last;
block *scan_current_block;
Type *scan_current_data;
void (*error_function)(char *);
};
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
template <class Type> class DBlock
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
DBlock(int size, void (*err_function)(char *) = NULL) { first = NULL; first_free = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~DBlock() { while (first) { block *next = first -> next; delete first; first = next; } }
/* Allocates one item */
Type *New()
{
block_item *item;
if (!first_free)
{
block *next = first;
first = (block *) new char [sizeof(block) + (block_size-1)*sizeof(block_item)];
if (!first) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
first_free = & (first -> data[0] );
for (item=first_free; item<first_free+block_size-1; item++)
item -> next_free = item + 1;
item -> next_free = NULL;
first -> next = next;
}
item = first_free;
first_free = item -> next_free;
return (Type *) item;
}
/* Deletes an item allocated previously */
void Delete(Type *t)
{
((block_item *) t) -> next_free = first_free;
first_free = (block_item *) t;
}
/***********************************************************************/
private:
typedef union block_item_st
{
Type t;
block_item_st *next_free;
} block_item;
typedef struct block_st
{
struct block_st *next;
block_item data[1];
} block;
int block_size;
block *first;
block_item *first_free;
void (*error_function)(char *);
};
#endif
% compiling mex functions
mex GraphCutMex.cpp MaxFlow.cpp graph.cpp
/* graph.cpp */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "graph.h"
#include "instances.inc"
template <typename captype, typename tcaptype, typename flowtype>
Graph<captype, tcaptype, flowtype>::Graph(int node_num_max, int edge_num_max, void (*err_function)(char *))
: node_num(0),
nodeptr_block(NULL),
error_function(err_function)
{
if (node_num_max < 16) node_num_max = 16;
if (edge_num_max < 16) edge_num_max = 16;
nodes = (node*) malloc(node_num_max*sizeof(node));
arcs = (arc*) malloc(2*edge_num_max*sizeof(arc));
if (!nodes || !arcs) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
node_last = nodes;
node_max = nodes + node_num_max;
arc_last = arcs;
arc_max = arcs + 2*edge_num_max;
maxflow_iteration = 0;
flow = 0;
}
template <typename captype, typename tcaptype, typename flowtype>
Graph<captype,tcaptype,flowtype>::~Graph()
{
if (nodeptr_block)
{
delete nodeptr_block;
nodeptr_block = NULL;
}
free(nodes);
free(arcs);
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::reset()
{
node_last = nodes;
arc_last = arcs;
node_num = 0;
if (nodeptr_block)
{
delete nodeptr_block;
nodeptr_block = NULL;
}
maxflow_iteration = 0;
flow = 0;
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::reallocate_nodes(int num)
{
int node_num_max = (int)(node_max - nodes);
node* nodes_old = nodes;
node_num_max += node_num_max / 2;
if (node_num_max < node_num + num) node_num_max = node_num + num;
nodes = (node*) realloc(nodes_old, node_num_max*sizeof(node));
if (!nodes) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
node_last = nodes + node_num;
node_max = nodes + node_num_max;
if (nodes != nodes_old)
{
arc* a;
for (a=arcs; a<arc_last; a++)
{
a->head = (node*) ((char*)a->head + (((char*) nodes) - ((char*) nodes_old)));
}
}
}
template <typename captype, typename tcaptype, typename flowtype>
void Graph<captype,tcaptype,flowtype>::reallocate_arcs()
{
int arc_num_max = (int)(arc_max - arcs);
int arc_num = (int)(arc_last - arcs);
arc* arcs_old = arcs;
arc_num_max += arc_num_max / 2; if (arc_num_max & 1) arc_num_max ++;
arcs = (arc*) realloc(arcs_old, arc_num_max*sizeof(arc));
if (!arcs) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
arc_last = arcs + arc_num;
arc_max = arcs + arc_num_max;
if (arcs != arcs_old)
{
node* i;
arc* a;
for (i=nodes; i<node_last; i++)
{
if (i->first) i->first = (arc*) ((char*)i->first + (((char*) arcs) - ((char*) arcs_old)));
}
for (a=arcs; a<arc_last; a++)
{
if (a->next) a->next = (arc*) ((char*)a->next + (((char*) arcs) - ((char*) arcs_old)));
a->sister = (arc*) ((char*)a->sister + (((char*) arcs) - ((char*) arcs_old)));
}
}
}
/* graph.h */
/*
This software library implements the maxflow algorithm
described in
"An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision."
Yuri Boykov and Vladimir Kolmogorov.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
September 2004
This algorithm was developed by Yuri Boykov and Vladimir Kolmogorov
at Siemens Corporate Research. To make it available for public use,
it was later reimplemented by Vladimir Kolmogorov based on open publications.
If you use this software for research purposes, you should cite
the aforementioned paper in any resulting publication.
----------------------------------------------------------------------
REUSING TREES:
Starting with version 3.0, there is a also an option of reusing search
trees from one maxflow computation to the next, as described in
"Efficiently Solving Dynamic Markov Random Fields Using Graph Cuts."
Pushmeet Kohli and Philip H.S. Torr
International Conference on Computer Vision (ICCV), 2005
If you use this option, you should cite
the aforementioned paper in any resulting publication.
*/
/*
For description, license, example usage see README.TXT.
*/
#ifndef __GRAPH_H__
#define __GRAPH_H__
#include <string.h>
#include "block.h"
#include <assert.h>
// NOTE: in UNIX you need to use -DNDEBUG preprocessor option to supress assert's!!!
// captype: type of edge capacities (excluding t-links)
// tcaptype: type of t-links (edges between nodes and terminals)
// flowtype: type of total flow
//
// Current instantiations are in instances.inc
template <typename captype, typename tcaptype, typename flowtype> class Graph
{
public:
typedef enum
{
SOURCE = 0,
SINK = 1
} termtype; // terminals
typedef int node_id;
/////////////////////////////////////////////////////////////////////////
// BASIC INTERFACE FUNCTIONS //
// (should be enough for most applications) //
/////////////////////////////////////////////////////////////////////////
// Constructor.
// The first argument gives an estimate of the maximum number of nodes that can be added
// to the graph, and the second argument is an estimate of the maximum number of edges.
// The last (optional) argument is the pointer to the function which will be called
// if an error occurs; an error message is passed to this function.
// If this argument is omitted, exit(1) will be called.
//
// IMPORTANT: It is possible to add more nodes to the graph than node_num_max
// (and node_num_max can be zero). However, if the count is exceeded, then
// the internal memory is reallocated (increased by 50%) which is expensive.
// Also, temporarily the amount of allocated memory would be more than twice than needed.
// Similarly for edges.
// If you wish to avoid this overhead, you can download version 2.2, where nodes and edges are stored in blocks.
Graph(int node_num_max, int edge_num_max, void (*err_function)(char *) = NULL);
// Destructor
~Graph();
// Adds node(s) to the graph. By default, one node is added (num=1); then first call returns 0, second call returns 1, and so on.
// If num>1, then several nodes are added, and node_id of the first one is returned.
// IMPORTANT: see note about the constructor
node_id add_node(int num = 1);
// Adds a bidirectional edge between 'i' and 'j' with the weights 'cap' and 'rev_cap'.
// IMPORTANT: see note about the constructor
void add_edge(node_id i, node_id j, captype cap, captype rev_cap);
// Adds new edges 'SOURCE->i' and 'i->SINK' with corresponding weights.
// Can be called multiple times for each node.
// Weights can be negative.
// NOTE: the number of such edges is not counted in edge_num_max.
// No internal memory is allocated by this call.
void add_tweights(node_id i, tcaptype cap_source, tcaptype cap_sink);
// Computes the maxflow. Can be called several times.
// FOR DESCRIPTION OF reuse_trees, SEE mark_node().
// FOR DESCRIPTION OF changed_list, SEE remove_from_changed_list().
flowtype maxflow(bool reuse_trees = false, Block<node_id>* changed_list = NULL);
// After the maxflow is computed, this function returns to which
// segment the node 'i' belongs (Graph<captype,tcaptype,flowtype>::SOURCE or Graph<captype,tcaptype,flowtype>::SINK).
//
// Occasionally there may be several minimum cuts. If a node can be assigned
// to both the source and the sink, then default_segm is returned.
termtype what_segment(node_id i, termtype default_segm = SOURCE);
//////////////////////////////////////////////
// ADVANCED INTERFACE FUNCTIONS //
// (provide access to the graph) //
//////////////////////////////////////////////
private:
struct node;
struct arc;
public:
////////////////////////////
// 1. Reallocating graph. //
////////////////////////////
// Removes all nodes and edges.
// After that functions add_node() and add_edge() must be called again.
//
// Advantage compared to deleting Graph and allocating it again:
// no calls to delete/new (which could be quite slow).
//
// If the graph structure stays the same, then an alternative
// is to go through all nodes/edges and set new residual capacities
// (see functions below).
void reset();
////////////////////////////////////////////////////////////////////////////////
// 2. Functions for getting pointers to arcs and for reading graph structure. //
// NOTE: adding new arcs may invalidate these pointers (if reallocation //
// happens). So it's best not to add arcs while reading graph structure. //
////////////////////////////////////////////////////////////////////////////////
// The following two functions return arcs in the same order that they
// were added to the graph. NOTE: for each call add_edge(i,j,cap,cap_rev)
// the first arc returned will be i->j, and the second j->i.
// If there are no more arcs, then the function can still be called, but
// the returned arc_id is undetermined.
typedef arc* arc_id;
arc_id get_first_arc();
arc_id get_next_arc(arc_id a);
// other functions for reading graph structure
int get_node_num() { return node_num; }
int get_arc_num() { return (int)(arc_last - arcs); }
void get_arc_ends(arc_id a, node_id& i, node_id& j); // returns i,j to that a = i->j
///////////////////////////////////////////////////
// 3. Functions for reading residual capacities. //
///////////////////////////////////////////////////
// returns residual capacity of SOURCE->i minus residual capacity of i->SINK
tcaptype get_trcap(node_id i);
// returns residual capacity of arc a
captype get_rcap(arc* a);
/////////////////////////////////////////////////////////////////
// 4. Functions for setting residual capacities. //
// NOTE: If these functions are used, the value of the flow //
// returned by maxflow() will not be valid! //
/////////////////////////////////////////////////////////////////
void set_trcap(node_id i, tcaptype trcap);
void set_rcap(arc* a, captype rcap);
////////////////////////////////////////////////////////////////////
// 5. Functions related to reusing trees & list of changed nodes. //
////////////////////////////////////////////////////////////////////
// If flag reuse_trees is true while calling maxflow(), then search trees
// are reused from previous maxflow computation.
// In this case before calling maxflow() the user must
// specify which parts of the graph have changed by calling mark_node():
// add_tweights(i),set_trcap(i) => call mark_node(i)
// add_edge(i,j),set_rcap(a) => call mark_node(i); mark_node(j)
//
// This option makes sense only if a small part of the graph is changed.
// The initialization procedure goes only through marked nodes then.
//
// mark_node(i) can either be called before or after graph modification.
// Can be called more than once per node, but calls after the first one
// do not have any effect.
//
// NOTE:
// - This option cannot be used in the first call to maxflow().
// - It is not necessary to call mark_node() if the change is ``not essential'',
// i.e. sign(trcap) is preserved for a node and zero/nonzero status is preserved for an arc.
// - To check that you marked all necessary nodes, you can call maxflow(false) after calling maxflow(true).
// If everything is correct, the two calls must return the same value of flow. (Useful for debugging).
void mark_node(node_id i);
// If changed_list is not NULL while calling maxflow(), then the algorithm
// keeps a list of nodes which could potentially have changed their segmentation label.
// Nodes which are not in the list are guaranteed to keep their old segmentation label (SOURCE or SINK).
// Example usage:
//
// typedef Graph<int,int,int> G;
// G* g = new Graph(nodeNum, edgeNum);
// Block<G::node_id>* changed_list = new Block<G::node_id>(128);
//
// ... // add nodes and edges
//
// g->maxflow(); // first call should be without arguments
// for (int iter=0; iter<10; iter++)
// {
// ... // change graph, call mark_node() accordingly
//
// g->maxflow(true, changed_list);
// G::node_id* ptr;
// for (ptr=changed_list->ScanFirst(); ptr; ptr=changed_list->ScanNext())
// {
// G::node_id i = *ptr; assert(i>=0 && i<nodeNum);
// g->remove_from_changed_list(i);
// // do something with node i...
// if (g->what_segment(i) == G::SOURCE) { ... }
// }
// changed_list->Reset();
// }
// delete changed_list;
//
// NOTE:
// - If changed_list option is used, then reuse_trees must be used as well.
// - In the example above, the user may omit calls g->remove_from_changed_list(i) and changed_list->Reset() in a given iteration.
// Then during the next call to maxflow(true, &changed_list) new nodes will be added to changed_list.
// - If the next call to maxflow() does not use option reuse_trees, then calling remove_from_changed_list()
// is not necessary. ("changed_list->Reset()" or "delete changed_list" should still be called, though).
void remove_from_changed_list(node_id i)
{
assert(i>=0 && i<node_num && nodes[i].is_in_changed_list);
nodes[i].is_in_changed_list = 0;
}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
private:
// internal variables and functions
struct node
{
arc *first; // first outcoming arc
arc *parent; // node's parent
node *next; // pointer to the next active node
// (or to itself if it is the last node in the list)
int TS; // timestamp showing when DIST was computed
int DIST; // distance to the terminal
int is_sink : 1; // flag showing whether the node is in the source or in the sink tree (if parent!=NULL)
int is_marked : 1; // set by mark_node()
int is_in_changed_list : 1; // set by maxflow if
tcaptype tr_cap; // if tr_cap > 0 then tr_cap is residual capacity of the arc SOURCE->node
// otherwise -tr_cap is residual capacity of the arc node->SINK
};
struct arc
{
node *head; // node the arc points to
arc *next; // next arc with the same originating node
arc *sister; // reverse arc
captype r_cap; // residual capacity
};
struct nodeptr
{
node *ptr;
nodeptr *next;
};
static const int NODEPTR_BLOCK_SIZE = 128;
node *nodes, *node_last, *node_max; // node_last = nodes+node_num, node_max = nodes+node_num_max;
arc *arcs, *arc_last, *arc_max; // arc_last = arcs+2*edge_num, arc_max = arcs+2*edge_num_max;
int node_num;
DBlock<nodeptr> *nodeptr_block;
void (*error_function)(char *); // this function is called if a error occurs,
// with a corresponding error message
// (or exit(1) is called if it's NULL)
flowtype flow; // total flow
// reusing trees & list of changed pixels
int maxflow_iteration; // counter
Block<node_id> *changed_list;
/////////////////////////////////////////////////////////////////////////
node *queue_first[2], *queue_last[2]; // list of active nodes
nodeptr *orphan_first, *orphan_last; // list of pointers to orphans
int TIME; // monotonically increasing global counter
/////////////////////////////////////////////////////////////////////////
void reallocate_nodes(int num); // num is the number of new nodes
void reallocate_arcs();
// functions for processing active list
void set_active(node *i);
node *next_active();
// functions for processing orphans list
void set_orphan_front(node* i); // add to the beginning of the list
void set_orphan_rear(node* i); // add to the end of the list
void add_to_changed_list(node* i);
void maxflow_init(); // called if reuse_trees == false
void maxflow_reuse_trees_init(); // called if reuse_trees == true
void augment(arc *middle_arc);
void process_source_orphan(node *i);
void process_sink_orphan(node *i);
void test_consistency(node* current_node=NULL); // debug function
};
///////////////////////////////////////
// Implementation - inline functions //
///////////////////////////////////////
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::node_id Graph<captype,tcaptype,flowtype>::add_node(int num)
{
assert(num > 0);
if (node_last + num > node_max) reallocate_nodes(num);
if (num == 1)
{
node_last -> first = NULL;
node_last -> tr_cap = 0;
node_last -> is_marked = 0;
node_last -> is_in_changed_list = 0;
node_last ++;
return node_num ++;
}
else
{
memset(node_last, 0, num*sizeof(node));
node_id i = node_num;
node_num += num;
node_last += num;
return i;
}
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::add_tweights(node_id i, tcaptype cap_source, tcaptype cap_sink)
{
assert(i >= 0 && i < node_num);
tcaptype delta = nodes[i].tr_cap;
if (delta > 0) cap_source += delta;
else cap_sink -= delta;
flow += (cap_source < cap_sink) ? cap_source : cap_sink;
nodes[i].tr_cap = cap_source - cap_sink;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::add_edge(node_id _i, node_id _j, captype cap, captype rev_cap)
{
assert(_i >= 0 && _i < node_num);
assert(_j >= 0 && _j < node_num);
assert(_i != _j);
assert(cap >= 0);
assert(rev_cap >= 0);
if (arc_last == arc_max) reallocate_arcs();
arc *a = arc_last ++;
arc *a_rev = arc_last ++;
node* i = nodes + _i;
node* j = nodes + _j;
a -> sister = a_rev;
a_rev -> sister = a;
a -> next = i -> first;
i -> first = a;
a_rev -> next = j -> first;
j -> first = a_rev;
a -> head = j;
a_rev -> head = i;
a -> r_cap = cap;
a_rev -> r_cap = rev_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::arc* Graph<captype,tcaptype,flowtype>::get_first_arc()
{
return arcs;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::arc* Graph<captype,tcaptype,flowtype>::get_next_arc(arc* a)
{
return a + 1;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::get_arc_ends(arc* a, node_id& i, node_id& j)
{
assert(a >= arcs && a < arc_last);
i = (node_id) (a->sister->head - nodes);
j = (node_id) (a->head - nodes);
}
template <typename captype, typename tcaptype, typename flowtype>
inline tcaptype Graph<captype,tcaptype,flowtype>::get_trcap(node_id i)
{
assert(i>=0 && i<node_num);
return nodes[i].tr_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline captype Graph<captype,tcaptype,flowtype>::get_rcap(arc* a)
{
assert(a >= arcs && a < arc_last);
return a->r_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_trcap(node_id i, tcaptype trcap)
{
assert(i>=0 && i<node_num);
nodes[i].tr_cap = trcap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_rcap(arc* a, captype rcap)
{
assert(a >= arcs && a < arc_last);
a->r_cap = rcap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::termtype Graph<captype,tcaptype,flowtype>::what_segment(node_id i, termtype default_segm)
{
if (nodes[i].parent)
{
return (nodes[i].is_sink) ? SINK : SOURCE;
}
else
{
return default_segm;
}
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::mark_node(node_id _i)
{
node* i = nodes + _i;
if (!i->next)
{
/* it's not in the list yet */
if (queue_last[1]) queue_last[1] -> next = i;
else queue_first[1] = i;
queue_last[1] = i;
i -> next = i;
}
i->is_marked = 1;
}
#endif
#include "graph.h"
#ifdef _MSC_VER
#pragma warning(disable: 4661)
#endif
// Instantiations: <captype, tcaptype, flowtype>
// IMPORTANT:
// flowtype should be 'larger' than tcaptype
// tcaptype should be 'larger' than captype
template class Graph<int,int,int>;
template class Graph<short,int,int>;
template class Graph<float,float,float>;
template class Graph<double,double,double>;
function s = grid_cut(s_cost, r_cost, delta_xy, wrap_xy, delta_lu)
%GRID_CUT detects terrain-like surfaces in a volumetric data.
%
% Detected surfaces are terrain-like, i.e. height z is a function of the
% position (x,y). Only on-surface costs, only in-region costs or both type
% of costs may be used. When using in-region costs for multiple surfaces,
% surfaces are non-intersecting and ordered, so that the first surface has
% the smallest z values, and the last surface has the largest z values.
%
% S = GRID_CUT(S_COST,R_COST,DELTA_XY,WRAP_XY,DELTA_LU)
%
% S_COST is a size (X,Y,Z,K) surface cost function. Cost (x,y,z,k) is an
% inverse to likelihood of a voxel (x,y,z) containing surface k.
% K is the number of surfaces and Z is up. When using only in-region
% costs, S_COST should either contain only zeros or be empty.
% R_COST is a size (X,Y,Z,K+1) region cost function. Cost (x,y,z,k) is an
% inverse to likelihood of a voxel (x,y,z) being in a region between
% the surface k and k+1, where the first and the last region are
% boundedend with the volume boundary. When using only on-surface
% costs, R_COST should either contain only zeros or be empty.
% DELTA_XY is a size (K,2) array of stiffness parameters for x and y. If a
% size (1,2) array is given, the same stiffness parameteres are used
% for all surfaces. If size (K,1) array is given, the same stiffness
% is used for x and y.
% WRAP_XY is a length 2 array of boolean wrap options for x and y. If not
% given defaults to false.
% DELTA_LU is a size (K-1,2) array of lower and upper surface overlaps,
% [dl du]. The constraint is: dl <= surf_k - surf_k+1 <= du. When
% using in-region costs, the surfaces are non-intersecting and
% ordered which requires dl > 0 and du >= dl. If a size (1,2) array
% is given, the same overlap parameteres are used for all surfaces.
% If not given, defaults to "no constraint" (dl=-Z, du=Z) when using
% only on-surface costs and to "no overlap" (dl=1, du=Z) otherwise.
% S is a size (X,Y,K) matrix of z coordinates for K segmented surfaces.
%
% Based on:
% "Optimal surface segmentation in volumetric images-a graph-theoretic
% approach." Li, Wu, Chen and Sonka. PAMI 2006.
% "Incorporation of Regional Information in Optimal 3-D Graph Search with
% Application for Intraretinal Layer Segmentation of Optical Coherence
% Tomography Images". Haeker, Wu, Abramoff, Kardon and Sonka. IPMI 2007.
%
% Author: Vedrana Andersen Dahl, vand@dtu.dk, 2013
%
% NOTE: needs Kolmogorovs implementation of the algorithm from
% "An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
% Energy Minimization in Vision."
% Yuri Boykov and Vladimir Kolmogorov. PAMI 2004
% assigning an unique index to each vertex in the first 3D graph (first surface)
if nargin<5
delta_lu = [];
end
if nargin<4
wrap_xy = [];
end
[s_cost, r_cost, delta_xy, wrap_xy, delta_lu] = assign_defaults...
(s_cost, r_cost, delta_xy, wrap_xy, delta_lu);
[X,Y,Z,K] = size(s_cost);
dimension = [X Y Z];
indices = reshape(1:prod(dimension),dimension);
base = indices(:,:,1);
next_surface = prod(dimension); % adding to indices is a shift to next surface
layers = (0:(K-1))*next_surface;
wrap = [wrap_xy 0]; % we do not wrap in z direction
% EDGES WHICH ARE THE SAME FOR ALL SURFACES:
% intracolumn arcs pointing down, Equation (2)
Ea1 = displacement_to_edges(indices, [0 0 -1], wrap); % first surface
Ea = repmat(Ea1,[K 1]) + kron(layers(:),ones(size(Ea1))); % all surfaces
Ea = [Ea,ones(size(Ea,1),1)*[inf,0]]; % assigning [inf 0] weight
% base edges, part of intercolumn arcs, Equation (3)
erxb1 = displacement_to_edges(base, [1 0 0], wrap);
eryb1 = displacement_to_edges(base, [0 1 0], wrap);
Erb1 = [erxb1; eryb1]; % first surface
Erb = repmat(Erb1,[K 1]) + kron(layers(:),ones(size(Erb1))); % all surfaces
% assigning [inf inf] weight, base edges are in both directions
Erb = [Erb,ones(size(Erb,1),1)*[inf,inf]];
% EDGES WHICH DEPEND ON SURFACE STIFFNESS:
% slanted edges, part of intercolumn arcs, Equation (3)
Erpm = []; % preallocation length could be computed from X,Y,Z,delta and wrap
for k = 1:K
erxp = displacement_to_edges(indices, [1 0 -delta_xy(k,1)], wrap);
erxm = displacement_to_edges(indices, [-1 0 -delta_xy(k,1)], wrap);
eryp = displacement_to_edges(indices, [0 1 -delta_xy(k,2)], wrap);
erym = displacement_to_edges(indices, [0 -1 -delta_xy(k,2)], wrap);
erpm = [erxp; erxm; eryp; erym] + layers(k);
Erpm = [Erpm;erpm];
end
% assigning [inf 0] weight, slanted edges are in one direction
Erpm = [Erpm,ones(size(Erpm,1),1)*[inf,0]];
Er = [Erpm; Erb]; % all inter edges, for all surfaces
E = [Ea;Er]; % all intracolumn and intercolumn edges, for all surfaces
% EDGES WHICH DEPEND ON DISTANCE BETWEEN SURFACES:
% intersurface arc, Equation (4)
if K>1 % only if we have more than 1 surface
Es = []; % preallocation length could be computed
for k = 1:K-1
esl = displacement_to_edges(indices, [0 0 delta_lu(k,1)], wrap);
esl = esl + ones(size(esl,1),1)*layers([k,k+1]);
esu = displacement_to_edges(indices, [0 0 -delta_lu(k,2)], wrap);
esu = esu + ones(size(esu,1),1)*layers([k+1,k]);
es = [esl;esu];
Es = [Es;es];
end
Es = [Es,ones(size(Es,1),1)*[inf,0]]; % assigning [inf 0] weight
% intersurface base edges
esb = [layers(1:end-1)',layers(2:end)']+1; %first vertex in all surfaces
Esb = [esb,ones(K-1,1)*[inf,inf]]; % assigning [inf inf]
E = [E;Es;Esb]; % all intracolumn, intercolumn and intersurface edges, for all surfaces
end
% EDGES WHICH DEPEND ON SURFACE LIKELIHOOD:
% up to here we do not use s_cost -- consider efficient algorithm if solving
% multiple problems of the same size
% vertex s_cost, Equation (1), done simulatniously for all surfaces
w_on = -1*ones([dimension,K]); % to prevent empty solution, see second half of section 4.1
w_on(:,:,2:end,:) = double(s_cost(:,:,2:end,:))-double(s_cost(:,:,1:end-1,:));
% In case of layered surfaces vertices which can't be realized should be removed,
% i.e. topmost vertices of lower surface and lowest vertices of higher surface.
% Instead of removing vertices, I assign inf weight to topmost vertices.
% And this only when delta_lu are both positive (both negative can be
% avoided by proper ordering of surfaces).
if K>1 % only if we have more than 1 surface
for k=1:K-1 % assigning inf on-surface weights instead of removing vertices
if delta_lu(k,1)>0 && delta_lu(k,1)<= delta_lu(k,2) % bit clumsy
w_on(:,:,end-delta_lu(k,1)+1:end,k) = inf;
end
end
end
% In-region cost, converting to double to avoid problems when using images
w_in = double(r_cost(:,:,:,1:end-1))-double(r_cost(:,:,:,2:end));
% There are issues concerning in-region cost e.g. a better way of preventing
% empty solutions or topmost solutions.
w_in(:,:,1,:) = -inf; % preventing empty solution
w = w_on + w_in;
Vp_ix = find(w(:)>=0); % positive vertices, to be connected to sink
Vm_ix = find(w(:)<0); % negative vertices, to be connected to source
Es = [Vm_ix, -w(Vm_ix), zeros(length(Vm_ix),1)]; % source edges
Et = [Vp_ix, zeros(length(Vp_ix),1), w(Vp_ix)]; % sink edges
Est = [Es;Et]; % all terminal edges
% FINDING GRAPH CUT USING MAGIC
[Scut, ~] = GraphCutMex(prod(dimension)*K,Est,E);
% retreiving surfaces as the upper envelope of Scut
S = zeros(X,Y,Z,K);
S(Scut) = 1;
s = zeros(X,Y,K);
for ki = 1:K
for x = 1:X
for y = 1:Y
s(x,y,ki) = find(S(x,y,:,ki),1,'last');
end
end
end
end
% NOTE: when some of the intersurface edges point upwards, i.e. when
% delta_l is positive, the lowest delta_l rows of a graph for higher
% surface can not appear in any feasible solution and can be removed.
% This has NOT been implemented here.
function edges = displacement_to_edges(indices, disp, wrap)
% indices -- 3D volume of indices
% disp -- length 3 vector of displacements, given as [x y,z]
% wrapping -- length 3 vector of boolean options, given as [wrapx wrapy wrapz]
% edges -- two columns of indices, each line is an edge.
[x_from,x_into] = displace_1D_indices(size(indices,1),disp(1),wrap(1));
[y_from,y_into] = displace_1D_indices(size(indices,2),disp(2),wrap(2));
[z_from,z_into] = displace_1D_indices(size(indices,3),disp(3),wrap(3));
indices_from = indices(x_from,y_from,z_from);
indices_into = indices(x_into,y_into,z_into);
edges = [indices_from(:),indices_into(:)];
end
function [from,into] = displace_1D_indices(dim,disp,wrap)
% dim -- length of the indices vector
% disp -- length of the displacement
% wrap -- boolean, indicating trimming or wrapping
indices = 1:dim;
if wrap
from = indices([1-min(disp,0):end,1:-min(disp,0)]);
into = indices([1+max(disp,0):end,1:max(disp,0)]);
else
from = indices(1-min(disp,0):end-max(disp,0));
into = indices(1+max(disp,0):end+min(disp,0));
end
end
function [s_cost, r_cost, delta_xy, wrap_xy, delta_lu] = assign_defaults...
(s_cost, r_cost, delta_xy, wrap_xy, delta_lu)
% either cost_s or cost_r need to be given (not empty and not all zeros)
if isempty(s_cost)
s_cost = zeros(size(r_cost)-[0,0,0,1]);
end
if isempty(r_cost)
r_cost = zeros([size(s_cost,1),size(s_cost,2),size(s_cost,3),...
size(s_cost,4)]+[0,0,0,1]); % to allow s_cost to be 3D
regional = false;
elseif all(r_cost(:)==0)
regional = false;
else
regional = true;
end
[X,Y,Z,K] = size(s_cost);
[Xr,Yr,Zr,Krplus1] = size(r_cost);
if ~X==Xr || ~Y==Yr || ~Z==Zr || ~(K+1)==Krplus1
error('Error using grid_cut. Dimensions of s_cost and r_cost must agree.')
end
% smoothness constraint may be given once for all surfaces
if size(delta_xy,1)==1
delta_xy = ones(K,1)*delta_xy;
end
% smoothness constraint may be given once for both directions
if size(delta_xy,2)==1
delta_xy = delta_xy*ones(1,2);
end
if isempty(wrap_xy) || (numel(wrap_xy)==1 && wrap_xy==0)
wrap_xy = [0 0];
end
% overlap constraint defaults to no overlap in region case
% and no constraint in surface case
if isempty(delta_lu)
if regional % no overlap
delta_lu = [1 Z];
else % no constraint
delta_lu = [-Z Z];
end
end
% overlap constraint may be given once for all surface pairs
if all(size(delta_lu)==[1,2])
delta_lu = ones(K-1,1)*delta_lu;
end
end
\ No newline at end of file
clear, close all
addpath GraphCut functions
I = imread('../../../../Data/week7/peaks_image.png');
figure,
subplot(1,2,1)
imagesc(I), colormap gray, axis image
% COST FUNCTION
% The region in the middle is bright compared to two darker regions.
P = permute(I, [2,3,1]); % making sure that up is the third dimension
region_cost = cat(4, P, (255-P), P);
% GEOMETRIC CONSTRAINS
delta_xy = 1; % smoothness very constrained, try also 3 to see less smoothness
wrap_xy = 0; % 0 for terren-like surfaces
delta_ul = [1 size(I,1)]; % can be very close, but may not overlap
% CUT
s = grid_cut([],region_cost,delta_xy,wrap_xy,delta_ul);
% VISUALIZATION
subplot(1,2,2)
imagesc(I), axis image ij, colormap gray, hold on
plot(1:size(I,2),permute(s,[1,3,2]),'r', 'LineWidth',2)
clear, close all
addpath GraphCut functions
lw = 2;
I = imread('../../../../Data/week7/layers_A.png');
surface_cost = permute(I,[2,3,1]);
dim = size(I);
%% input
figure
subplot(1,4,1)
imagesc(I), axis image, colormap gray
title('input image'), drawnow
%% one line
delta = 3;
wrap = false;
s = grid_cut(surface_cost, [], delta, wrap);
subplot(1,4,2)
imagesc(I), axis image, colormap gray, hold on
plot(1:dim(2), s, 'r', 'LineWidth', lw)
title(['delta = ',num2str(delta)]), drawnow
%% a smoother line
delta = 1;
wrap = false;
s = grid_cut(surface_cost, [], delta, wrap);
subplot(1,4,3)
imagesc(I), axis image, colormap gray, hold on
plot(1:dim(2), s, 'r', 'LineWidth', lw)
title(['delta = ',num2str(delta)]), drawnow
%% two lines
costs = cat(4,surface_cost,surface_cost);
delta = 3;
wrap = false;
overlap = [15, size(I,1)];
s = grid_cut(costs, [], delta, wrap, overlap);
subplot(1,4,4)
imagesc(I), axis image, colormap gray, hold on
plot(1:dim(2),permute(s,[1,3,2]),'r', 'LineWidth',lw)
title('two dark lines'), drawnow
\ No newline at end of file
% optional exercise 1.1.5
I = imread('../../../../Data/week1/dental/slice100.png');
a = 180; % number of angles for unfolding
angles = (0 : (a-1)) *2*pi/a; % angular coordinate
center = (1+size(I))/2;
r = 1:min(size(I)/2); % radial coordinate for unwrapping
X = center(1) + r'*cos(angles);
Y = center(2) + r'*sin(angles);
F = griddedInterpolant(double(I));
U = F(X,Y);
figure
subplot(121), imagesc(I), axis image, colormap gray
subplot(122), imagesc(U), axis image, colormap gray
\ No newline at end of file
import numpy as np
import matplotlib.pyplot as plt
import skimage.io
import slgbuilder
I = skimage.io.imread('../../../../Data/week7/peaks_image.png').astype(np.int32)
fig, ax = plt.subplots(1,2)
ax[0].imshow(I, cmap='gray')
layers = [slgbuilder.GraphObject(0*I), slgbuilder.GraphObject(0*I)] # no on-surface cost
helper = slgbuilder.MaxflowBuilder()
helper.add_objects(layers)
# Addin regional costs,
# the region in the middle is bright compared to two darker regions.
helper.add_layered_region_cost(layers[0], I, 255-I)
helper.add_layered_region_cost(layers[1], 255-I, I)
# Adding geometric constrains
helper.add_layered_boundary_cost()
helper.add_layered_smoothness(delta=1, wrap=False)
helper.add_layered_containment(layers[0], layers[1], min_margin=1)
# Cut
helper.solve()
segmentations = [helper.what_segments(l).astype(np.int32) for l in layers]
segmentation_lines = [s.shape[0] - np.argmax(s[::-1,:], axis=0) - 1 for s in segmentations]
# Visualization
ax[1].imshow(I, cmap='gray')
for line in segmentation_lines:
ax[1].plot(line, 'r')
import numpy as np
import matplotlib.pyplot as plt
import skimage.io
import slgbuilder
#%% input
I = skimage.io.imread('../../../../Data/week7/layers_A.png').astype(np.int32)
fig, ax = plt.subplots(1,4)
ax[0].imshow(I, cmap='gray')
ax[0].set_title('input image')
#%% one line
delta = 3
layer = slgbuilder.GraphObject(I)
helper = slgbuilder.MaxflowBuilder()
helper.add_object(layer)
helper.add_layered_boundary_cost()
helper.add_layered_smoothness(delta=delta, wrap=False)
helper.solve()
segmentation = helper.what_segments(layer)
segmentation_line = segmentation.shape[0] - np.argmax(segmentation[::-1,:], axis=0) - 1
ax[1].imshow(I, cmap='gray')
ax[1].plot(segmentation_line, 'r')
ax[1].set_title(f'delta = {delta}')
#%% a smoother line
delta = 1
layer = slgbuilder.GraphObject(I)
helper = slgbuilder.MaxflowBuilder()
helper.add_object(layer)
helper.add_layered_boundary_cost()
helper.add_layered_smoothness(delta=delta, wrap=False)
helper.solve()
segmentation = helper.what_segments(layer)
segmentation_line = segmentation.shape[0] - np.argmax(segmentation[::-1,:], axis=0) - 1
ax[2].imshow(I, cmap='gray')
ax[2].plot(segmentation_line, 'r')
ax[2].set_title(f'delta = {delta}')
#%% tow lines
layers = [slgbuilder.GraphObject(I), slgbuilder.GraphObject(I)]
delta = 3
helper = slgbuilder.MaxflowBuilder()
helper.add_objects(layers)
helper.add_layered_boundary_cost()
helper.add_layered_smoothness(delta=delta, wrap=False)
helper.add_layered_containment(layers[0], layers[1], min_margin=15)
helper.solve()
segmentations = [helper.what_segments(l).astype(np.int32) for l in layers]
segmentation_lines = [s.shape[0] - np.argmax(s[::-1,:], axis=0) - 1 for s in segmentations]
ax[3].imshow(I, cmap='gray')
for line in segmentation_lines:
ax[3].plot(line, 'r')
ax[3].set_title('two dark lines')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 27 09:14:57 2020
@author: vand
"""
# optional exercise 1.1.5
import skimage.io
import numpy as np
import scipy.interpolate
import matplotlib.pyplot as plt
I = skimage.io.imread('../../../../Data/week1/dental/slice100.png')
a = 180 # number of angles for unfolding
angles = np.arange(a)*2*np.pi/a # angular coordinate
center = (np.array(I.shape)-1)/2
r = int(min(I.shape)/2)
radii = np.arange(r) + 1 #radial coordinate for unwrapping
X = center[0] + np.outer(radii,np.cos(angles))
Y = center[1] + np.outer(radii,np.sin(angles))
F = scipy.interpolate.interp2d(np.arange(I.shape[0]), np.arange(I.shape[1]), I)
U = np.array([F(p[0],p[1]) for p in np.c_[Y.ravel(),X.ravel()]])
U = U.reshape((r,a)).astype(np.uint8)
fig, ax = plt.subplots(1,2)
ax[0].imshow(I, cmap='gray')
ax[1].imshow(U, cmap='gray')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment