Newer
Older
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
-- * Context
Context (..),
defaultContext,
-- * Helpers
prettyIdent,
) where
import qualified Data.Set as Set
import Data.Vector.Internal.Check (HasCallStack)
, typeDefs :: !(Map.Map C.Ident InlineType)
, inlineExprs :: !(Map.Map C.Ident InlineExpr)
= ITKeep
| ITInline ![C.CDeclarationSpecifier C.NodeInfo]
deriving (Show, Eq)
data InlineExpr
= IEDelete
| IEInline !C.CExpr
| IEKeep
defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit
defaultReduceC a = reduceCTranslUnit a defaultContext
{-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
addTypeDefs :: [C.Ident] -> InlineType -> Context -> Context
addTypeDefs ids cs Context{..} =
Context
{ typeDefs =
foldl' (\a i -> Map.insert i cs a) typeDefs ids
, ..
}
addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context
addInlineExpr i e Context{..} =
Context
{ inlineExprs = Map.insert i e inlineExprs
, ..
}
addKeyword :: Keyword -> Context -> Context
addKeyword k Context{..} =
Context
{ keywords = Set.insert k keywords
, ..
}
-- deleteKeyword :: Keyword -> Context -> Context
-- deleteKeyword k Context{..} =
-- Context
-- { keywords = Set.delete k keywords
-- , ..
-- }
defaultContext :: Context
defaultContext =
Context
isIn :: Keyword -> Context -> Bool
isIn k = Set.member k . keywords
prettyIdent :: C.Identifier C.NodeInfo -> [Char]
prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a)
reduceCTranslUnit
:: (MonadReduce Lab m)
=> C.CTranslationUnit C.NodeInfo
-> Context
-> m (C.CTranslationUnit C.NodeInfo)
reduceCTranslUnit (C.CTranslUnit es ni) ctx = do
es' <- foldr reduceCExternalDeclaration (\_ -> pure []) es ctx
pure $ C.CTranslUnit es' ni
reduceCExternalDeclaration
:: (MonadReduce Lab m)
=> C.CExternalDeclaration C.NodeInfo
-> (Context -> m [C.CExternalDeclaration C.NodeInfo])
-> Context
-> m [C.CExternalDeclaration C.NodeInfo]
reduceCExternalDeclaration r cont ctx = do
C.CFDefExt fun
| KeepMain `isIn` ctx && maybe False (("main" ==) . C.identToString) (functionName fun) -> do
r' <- C.CFDefExt <$> reduceCFunDef fun ctx
(r' :) <$> cont ctx
| otherwise ->
("remove function " <> C.identToString fid, C.posOf r)
(cont ctx)
do
r' <- C.CFDefExt <$> reduceCFunDef fun ctx
(r' :) <$> cont ctx
C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) decl _ -> do
let [ids] = identifiers decl
split
("inline typedef " <> C.identToString ids, C.posOf r)
(cont (addTypeDefs [ids] (ITInline rst) ctx))
( (C.CDeclExt (inlineTypeDefsCDeclaration result ctx) :)
<$> cont (addTypeDefs [ids] ITKeep ctx)
)
-- A const
C.CDecl rec decl ni' -> do
(decl', ctx') <- foldr reduceCDeclarationItem (pure ([], ctx)) decl
case decl' of
[]
| AllowEmptyDeclarations `isIn` ctx' ->
split ("remove empty declaration", C.posOf r) (cont ctx') do
(C.CDeclExt (inlineTypeDefsCDeclaration (C.CDecl rec decl' ni') ctx) :) <$> cont ctx'
_ow -> (C.CDeclExt (inlineTypeDefsCDeclaration (C.CDecl rec decl' ni') ctx) :) <$> cont ctx'
a -> don'tHandle a
_r -> don'tHandle r
reduceCFunDef
=> C.CFunctionDef C.NodeInfo
-> Context
-> m (C.CFunctionDef C.NodeInfo)
reduceCFunDef (C.CFunDef spc dec cdecls smt ni) ctx = do
smt' <- reduceCStatementOrEmptyBlock smt ctx'
pure $
C.CFunDef
(inlineTypeDefsSpecs spc ctx)
(inlineTypeDefsCDeclarator dec ctx)
(map (`inlineTypeDefsCDeclaration` ctx) cdecls)
!ctx' = foldr (`addInlineExpr` IEKeep) ctx ids
ids = params dec
params :: C.CDeclarator C.NodeInfo -> [C.Ident]
params = \case
C.CDeclr _ [C.CFunDeclr (C.CFunParamsNew decls _) _ _] _ _ _ ->
decls & concatMap \case
C.CDecl _ items _ ->
items & concatMap \case
C.CDeclarationItem (C.CDeclr (Just idx) _ _ _ _) _ _ -> [idx]
_ow -> []
a -> don'tHandle a
a -> don'tHandle a
=> C.CCompoundBlockItem C.NodeInfo
-> (Context -> m [C.CCompoundBlockItem C.NodeInfo])
-> Context
-> m [C.CCompoundBlockItem C.NodeInfo]
reduceCCompoundBlockItem r cont ctx = do
case r of
C.CBlockStmt smt -> do
case reduceCStatement smt ctx of
Just rsmt -> split ("remove statement", C.posOf r) (cont ctx) do
smt' <- rsmt
case smt' of
C.CCompound [] ss _ -> do
split ("expand compound statment", C.posOf r) ((ss <>) <$> cont ctx) do
(C.CBlockStmt smt' :) <$> cont ctx
_ow -> do
(C.CBlockStmt smt' :) <$> cont ctx
Nothing -> cont ctx
C.CBlockDecl declr -> do
case declr of
C.CDecl rec decl ni' -> do
(decl', ctx') <- foldr reduceCDeclarationItem (pure ([], ctx)) decl
case decl' of
[]
| AllowEmptyDeclarations `isIn` ctx' ->
split ("remove empty declaration", C.posOf r) (cont ctx') do
(C.CBlockDecl (inlineTypeDefsCDeclaration (C.CDecl rec decl' ni') ctx) :) <$> cont ctx'
_ow -> (C.CBlockDecl (inlineTypeDefsCDeclaration (C.CDecl rec decl' ni') ctx) :) <$> cont ctx'
-> m ([C.CDeclarationItem C.NodeInfo], Context)
-> m ([C.CDeclarationItem C.NodeInfo], Context)
dr@(C.CDeclr (Just i) [] Nothing [] ni)
(Just (C.CInitExpr c ni'))
(ds, ctx) <- ma
c' <- fromMaybe (pure zeroExpr) (reduceCExpr c ctx)
( inlineTypeDefsCDI (C.CDeclarationItem dr (Just (C.CInitExpr c' ni')) Nothing) ctx : ds
, addInlineExpr i IEKeep ctx
C.CDeclarationItem (C.CDeclr (Just i) _ Nothing _ ni) _ Nothing -> do
(ds, ctx) <- ma
split
("remove variable " <> C.identToString i, C.posOf ni)
(pure (ds, addInlineExpr i IEDelete ctx))
(pure (inlineTypeDefsCDI d ctx : ds, addInlineExpr i IEKeep ctx))
a@(C.CDeclarationItem (C.CDeclr _ _ _ _ ni) _ _) -> do
don'tHandleWithNodeInfo a ni
=> C.CStatement C.NodeInfo
-> Context
-> m (C.CStatement C.NodeInfo)
reduceCStatementOrEmptyBlock stmt ctx = do
case reduceCStatement stmt ctx of
Just ex -> do
ex
Nothing -> do
pure emptyBlock
where
emptyBlock = C.CCompound [] [] C.undefNode
reduceCStatement
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
=> C.CStatement C.NodeInfo
-> Context
-> Maybe (m (C.CStatement C.NodeInfo))
reduceCStatement smt ctx = case smt of
C.CCompound is cbi ni -> Just do
cbi' <- foldr reduceCCompoundBlockItem (\_ -> pure []) cbi ctx
pure $ C.CCompound is cbi' ni
C.CWhile e s dow ni -> do
rs <- reduceCStatement s ctx
Just do
e' <- reduceCExprOrZero e ctx
s' <- rs
pure $ C.CWhile e' s' dow ni
C.CExpr me ni -> do
case me of
Just e -> do
if DoNoops `isIn` ctx
then Just do
e' <- maybeSplit ("change to noop", C.posOf smt) $ reduceCExpr e ctx
pure $ C.CExpr e' ni
else do
re <- reduceCExpr e ctx
Just do
e' <- re
pure $ C.CExpr (Just e') ni
Nothing ->
Just $ pure $ C.CExpr Nothing ni
C.CReturn me ni -> Just do
case me of
Just e -> do
e' <- reduceCExprOrZero e ctx
pure $ C.CReturn (Just e') ni
Nothing ->
pure $ C.CReturn Nothing ni
C.CIf e s els ni -> Just do
e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e ctx
els' <- case els of
Just els' -> do
maybeSplit ("remove else branch", C.posOf els') do
reduceCStatement els' ctx
Nothing -> pure Nothing
s' <- reduceCStatementOrEmptyBlock s ctx
case (e', els') of
(Nothing, Nothing) -> pure s'
(Just e'', Nothing) -> pure $ C.CIf e'' s' Nothing ni
(Nothing, Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni
(Just e'', Just x) -> pure $ C.CIf e'' s' (Just x) ni
C.CFor e1 e2 e3 s ni -> Just $ do
(me1', ctx') <- case e1 of
C.CForDecl (C.CDecl rec decl ni') -> do
(decl', ctx') <- foldr reduceCDeclarationItem (pure ([], ctx)) decl
res <-
if null decl'
then
whenSplit
(AllowEmptyDeclarations `isIn` ctx')
("remove empty declaration", C.posOf ni')
(pure Nothing)
(pure $ Just $ C.CForDecl (C.CDecl rec decl' ni'))
else pure $ Just $ C.CForDecl (C.CDecl rec decl' ni')
pure (res, ctx')
C.CForInitializing e -> do
e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' ctx)
whenSplit
(AllowEmptyDeclarations `isIn` ctx)
("remove empty declaration", C.posOf ni)
(pure (Nothing, ctx))
s' <- reduceCStatementOrEmptyBlock s ctx'
case me1' of
Nothing -> do
split ("remove the for loop", C.posOf smt) (pure s') do
e2' <- case e2 of
Just e2' -> maybeSplit ("remove check", C.posOf e2') (reduceCExpr e2' ctx')
Nothing -> pure Nothing
e3' <- case e3 of
Just e3' -> maybeSplit ("remove iterator", C.posOf e3') (reduceCExpr e3' ctx')
Nothing -> pure Nothing
pure $ C.CFor (C.CForInitializing Nothing) e2' e3' s' ni
Just e1' -> do
e2' <- case e2 of
Just e2' -> maybeSplit ("remove check", C.posOf e2') (reduceCExpr e2' ctx')
Nothing -> pure Nothing
e3' <- case e3 of
Just e3' -> maybeSplit ("remove iterator", C.posOf e3') (reduceCExpr e3' ctx')
Nothing -> pure Nothing
pure $ C.CFor e1' e2' e3' s' ni
C.CBreak ni -> Just do
pure (C.CBreak ni)
C.CLabel i s [] ni -> Just do
s' <- reduceCStatementOrEmptyBlock s ctx
pure $ C.CLabel i s' [] ni
C.CGoto i ni -> Just do
pure $ C.CGoto i ni
-- C.CCompound is cbi ni -> do
-- cbi' <- collect (reduce @C.CCompoundBlockItem) cbi
-- pure $ C.CCompound is cbi' ni
-- C.CExpr e ni -> do
-- e' <- optional do
-- e' <- liftMaybe e
-- reduce @C.CExpression e'
-- pure $ C.CExpr e' ni
-- C.CReturn e ni -> do
-- e' <- traverse (fmap orZero reduce) e
-- pure $ C.CReturn e' ni
-- C.CLabel i s [] ni -> do
-- -- todo fix attrs
-- s' <- reduce s
-- withFallback s' do
-- givenThat (Val.is i)
-- pure $ C.CLabel i s' [] ni
-- C.CWhile e s dow ni -> do
-- e' <- orZero (reduce @C.CExpression e)
-- s' <- reduce s
-- pure $ C.CWhile e' s' dow ni
-- | If the condition is statisfied try to reduce to the a.
whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a
whenSplit cn lab a b
| cn = split lab a b
| otherwise = b
maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a)
maybeSplit lab = \case
Just r -> do
split lab (pure Nothing) (Just <$> r)
Nothing -> do
pure Nothing
zeroExpr :: C.CExpression C.NodeInfo
zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode)
reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr
reduceCExprOrZero expr ctx = do
case reduceCExpr expr ctx of
Just ex -> do
split ("replace by zero", C.posOf expr) (pure zeroExpr) ex
Nothing -> do
pure zeroExpr
reduceCExpr :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> Maybe (m C.CExpr)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
reduceCExpr expr ctx = case expr of
C.CBinary o elhs erhs ni -> do
case reduceCExpr elhs ctx of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CBinary o l' r' ni
Nothing ->
fail "could not reduce right hand side"
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CAssign o elhs erhs ni ->
case reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CAssign o l' r' ni
Nothing ->
fail "could not reduce right hand side"
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CVar i _ ->
case Map.lookup i . inlineExprs $ ctx of
Just mx -> case mx of
Nothing
Nothing -> error ("Could not find " <> show i <> " at " <> show (C.posOf expr) <> "\n" <> show (inlineExprs ctx))
C.CConst x -> Just do
pure $ C.CConst x
C.CUnary o elhs ni -> do
elhs' <- reduceCExpr elhs (addKeyword DisallowVariableInlining ctx)
Just $ split ("reduce to operant", C.posOf expr) elhs' do
e <- elhs'
pure $ C.CUnary o e ni
C.CCall e es ni -> do
re <- reduceCExpr e (addKeyword DisallowVariableInlining ctx)
Just $ do
e' <- re
es' <- traverse (`reduceCExprOrZero` ctx) es
pure $ C.CCall e' es' ni
C.CCond ec et ef ni -> do
-- TODO: More fine grained reduction is possible here.
Just $ do
ec' <- reduceCExprOrZero ec ctx
ef' <- reduceCExprOrZero ef ctx
et' <- case et of
Just et' -> Just <$> reduceCExprOrZero et' ctx
Nothing -> pure Nothing
pure $ C.CCond ec' et' ef' ni
C.CCast decl e ni -> do
re <- reduceCExpr e ctx
Just do
split ("don't cast", C.posOf ni) re do
e' <- re
pure (C.CCast (inlineTypeDefsCDeclaration decl ctx) e' ni)
C.CIndex e1 e2 ni -> do
-- TODO: Better reduction is posisble here.
re1 <- reduceCExpr e1 ctx
Just do
e1' <- re1
e2' <- reduceCExprOrZero e2 ctx
pure $ C.CIndex e1' e2' ni
C.CComma items ni -> Just do
let Just (x, rst) = List.uncons (reverse items)
rst' <-
foldr
( \e cc -> do
maybeSplit ("remove expression", C.posOf e) (reduceCExpr e ctx) >>= \case
Just e' -> (e' :) <$> cc
Nothing -> cc
)
(pure [])
rst
x' <- reduceCExprOrZero x ctx
if List.null rst'
then pure x'
else pure $ C.CComma (reverse (x' : rst')) ni
a -> don'tHandleWithPos a
inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo
inlineTypeDefsCDeclaration decl ctx =
case decl of
C.CDecl items decli ni ->
C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni
a -> don'tHandle a
inlineTypeDefsSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Context -> [C.CDeclarationSpecifier C.NodeInfo]
inlineTypeDefsSpecs r ctx =
r & concatMap \case
a@(C.CTypeSpec (C.CTypeDef idx _)) -> do
case Map.lookup idx . typeDefs $ ctx of
Just ITKeep -> [a]
Just (ITInline res) -> res
Nothing -> error ("could not find typedef:" <> show idx)
a -> [a]
{-# NOINLINE inlineTypeDefsSpecs #-}
inlineTypeDefsCDeclarator
:: C.CDeclarator C.NodeInfo
-> Context
-> C.CDeclarator C.NodeInfo
inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx =
C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni
inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo
inlineTypeDefsX ctx = \case
C.CFunDeclr (C.CFunParamsNew x y) b c ->
C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c
C.CArrDeclr a b c -> C.CArrDeclr a b c
C.CPtrDeclr a b -> C.CPtrDeclr a b
a -> don'tHandle a
inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo
inlineTypeDefsCDI di ctx = case di of
C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni
a -> don'tHandle a
identifiers :: forall a. (Data a) => a -> [C.Ident]
identifiers d = appEndo (go d) []
where
go :: forall a'. (Data a') => a' -> Endo [C.Ident]
go d' = case cast d' of
Just l -> Endo (l :)
Nothing -> gmapQl (<>) mempty go d'
functionName :: C.CFunctionDef C.NodeInfo -> Maybe C.Ident
functionName = \case
C.CFunDef _ (C.CDeclr ix _ _ _ _) _ _ _ -> ix
don'tHandle :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> b
don'tHandle f = error (show (f $> ()))
don'tHandleWithPos :: (HasCallStack, Functor f, Show (f ()), C.Pos (f C.NodeInfo)) => f C.NodeInfo -> b
don'tHandleWithPos f = error (show (f $> ()) <> " at " <> show (C.posOf f))
don'tHandleWithNodeInfo :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> C.NodeInfo -> b
don'tHandleWithNodeInfo f ni = error (show (f $> ()) <> " at " <> show (C.posOf ni))