Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% IMMOPTIBOX Optimization and Data Fitting Toolbox
% Version 2.2, November 19, 2010
% Copyright (c) 2010 by Hans Bruun Nielsen and IMM.
%
% General unconstrained optimization
% dampnewton - Damped Neton method. Demands analytical expreesions
% for the gradient and Hessian
% linesearch - Choice between soft and exact line search.
% ucminf - Unconstrained minimization of a scalar function of a
% vector variable. Demands analytical expression for
% the gradient. Based on BFGS updating of the inverse
% Hessian and soft line search.
%
% Unconstrained, nonlinear least squares problems
% dogleg - Powell's dog-leg method. Demands analytical
% expression for the Jacobian.
% marquardt - Levenberg-Marquardt method. Demands analytical
% expression for the Jacobian.
% smarquardt - Levenberg-Marquardt method with successive updating
% of approximations to the Jacobian.
%
% Data fitting with cubic splines
% splinefit - Weighted least squares fit of a cubic spline to
% given data points. Possibility of assigning boundary
% conditions.
% splineval - Evaluate a cubic spline s as computed by SPLINEFIT.
% splinedif - Evaluate s', s'' or s'''.
%
% Robust estimation
% huberobj - Value and gradient of Huber estimator.
% Allows one-sided Huber function.
% linhuber - Minimizer of an extended linear Huber estimation
% problem. Allows one-sided Huber function.
% nonlinhuber - Minimizer of an extended nonlinear Huber estimation
% problem. Allows one-sided Huber function.
%
% Multiexponential fitting
% mexpfit - Weighted least squares fit of a multiexponential
% model to given data points. Algorithm based on
% separability.
%
% Nonlinear systems of equations
% nonlinsys - Solve nonlinear system of equations. Dog Leg
% method with updating of approximate Jacobian.
%
% Auxiliary programs
% checkgrad - Check implementation of gradient (or Jacobian)
% by means of finite differences.
%
% Test problems
% uctpget - Define test problem for unconstrained minimization.
% uctpval - Evaluate test problem.
%
% Data files
% optic.dat - Optic fibre data.
% osl.dat - Data from an optically stimulated luminiscence
% experiment.
% peaks.dat - Data with peaks and "shoulders".
% wild.dat - Data with "wild points".
% efit1.dat - Data for exponential fitting.
% efit2.dat - As efit1.dat, except that there are "wild points".