Skip to content
Snippets Groups Projects
MachineLearning.py 121 KiB
Newer Older
  • Learn to ignore specific revisions
  • glia's avatar
    glia committed
    1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
                        if len(K) > 1:
                            K = K[np.where(K == np.min(K))[0]]
                        err = inner_cv_scores[C,K]
                        # Save validation error and features
                        val_err_logreg[n1,C] = err
                        # Save the features chosen by RFE based on index from pre mRMR
                        sfs_feat_idx = np.where(X_train.columns.isin(sfs.subsets_[int(K)+1]["feature_names"]))[0] # K+1 since it starts with 1 feature
                        val_feat_logreg[n1,C,0:len(sfs_feat_idx)] = sfs_feat_idx
                        
                        # print("Finished LogReg run {} out of {}".format(C+1,len(C_parameter_LogReg)))
                    
                    # Random forest                
                    model_test_err = np.zeros((k_fold,len(trees),len(depth)))
                    RF_feat_import = np.zeros((k_fold,len(trees),len(depth),temp_X_train_mRMR.shape[1]))
                    
                    counter = 0
                    for cv in range(k_fold):
                        # Retrieve CV indices
                        train_index_rf = Inner_CV[cv][0]
                        test_index_rf = Inner_CV[cv][1]
                        # Retrieve datasets
                        X_train2 = temp_X_train_mRMR.iloc[train_index_rf]; X_test2 = temp_X_train_mRMR.iloc[test_index_rf]
                        y_train2 = y_train.to_numpy().ravel()[train_index_rf]; y_test2 = y_train.to_numpy().ravel()[test_index_rf]
                        
                        for t in range(len(trees)):
                            for d in range(len(depth)):
                                RF = RandomForestClassifier(n_estimators=trees[t], max_features="sqrt", max_depth=depth[d],
                                                            n_jobs=1, random_state=None)
                                RF.fit(X_train2.to_numpy(),y_train2)
                                # Validation error
                                RF_y = RF.predict(X_test2.to_numpy())
                                err = balanced_accuracy_score(y_test2,RF_y)
                                # Save to array
                                model_test_err[cv,t,d] = err
                                # Save feature importance array
                                RF_feat_import[cv,t,d] = RF.feature_importances_
                        counter += 1
                        # print("Finished RF run {} out of {}".format(counter, k_fold))
                    
                    # Average the errors over the CV folds
                    model_test_err_mean = np.mean(model_test_err, axis=0)
                    val_err_rf[n1,:,:] = model_test_err_mean
                    # Average the feature importances over the CV folds
                    RF_feat_import = np.mean(RF_feat_import, axis=0)
                    val_feat_import_rf[n1,:,:,0:RF_feat_import.shape[2]] = RF_feat_import
                    # Save the features used by the RF based on index from pre mRMR
                    rf_feat_idx = np.where(X_train.columns.isin(mRMR_features1))[0]
                    val_feat_rf[n1,:,:,0:len(rf_feat_idx)] = rf_feat_idx
                    
                    # Print progress
                    current_progress = (n1+1)/(len(n_feat_mRMR1))*100
                    print("Finished {}% of inner fold optimization for feat: {}".format(current_progress,temp_feat[0]))
                    
                # Choose the optimal parameters
                ### SVM
                n1, C = np.where(val_err_svm==np.max(val_err_svm))
                
                if len(C) > 1:
                    print("There are multiple SVM runs with the same validation error")
                    print("Choosing run with fewest features to alleviate overfitting")
                    rfe_feat_len = []
                    for i2 in range(len(C)):
                        n1_temp = int(n1[i2])
                        C_temp = int(C[i2])
                        temp_feats = val_feat_svm[n1_temp,C_temp][~np.isnan(val_feat_svm[n1_temp,C_temp])].astype(int)
                        rfe_feat_len.append(len(temp_feats))
                    
                    rfe_feat_min = np.where(rfe_feat_len==np.min(rfe_feat_len))[0]
                    if len(rfe_feat_min) > 1:
                        print("Multiple SVM runs with same number of fewest features")
                        print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                        C_min = np.argmin(C[rfe_feat_min])
                        n1, C = [int(n1[rfe_feat_min][C_min]),
                                        int(C[rfe_feat_min][C_min])]
                    else:
                        n1, C = [int(n1[int(rfe_feat_min)]),
                                      int(C[int(rfe_feat_min)])]
                else:
                    n1, C = [int(n1), int(C)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                C_chosen = C_parameter_SVM[C]
                
                # Save the best validation error
                val_error = val_err_svm[n1, C]
                
                # Get the subsets chosen
                chosen_feats = val_feat_svm[n1,C][~np.isnan(val_feat_svm[n1,C])].astype(int)
                rfe_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(rfe_features)
                x_train_mRMR2_rfe = X_train[rfe_features]
                
                # Fit on all training data
                model = SVC(C=C_chosen, kernel="linear", tol=1e-3, cache_size=4000)
                model = model.fit(x_train_mRMR2_rfe,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_rfe)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[rfe_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,0,:] = [train_error,val_error,test_error]
                SVM_model_par = [mRMR_chosen1,C_chosen,n_final_feat]
                SVM_model = model
                SVM_y_pred = [[model_train_y],[y_pred]]
                
                ### LogReg with SFS
                n1, C = np.where(val_err_logreg==np.max(val_err_logreg))
                if len(C) > 1:
                    print("There are multiple LogReg runs with the same validation error")
                    print("Choosing run with fewest features to alleviate overfitting")
                    sfs_feat_len = []
                    for i2 in range(len(C)):
                        n1_temp = int(n1[i2])
                        C_temp = int(C[i2])
                        temp_feats = val_feat_logreg[n1_temp,C_temp][~np.isnan(val_feat_logreg[n1_temp,C_temp])].astype(int)
                        sfs_feat_len.append(len(temp_feats))
                    
                    sfs_feat_min = np.where(sfs_feat_len==np.min(sfs_feat_len))[0]
                    if len(sfs_feat_min) > 1:
                        print("Multiple LogReg runs with same number of fewest features")
                        print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                        C_min = np.argmin(C[sfs_feat_min])
                        n1, C = [int(n1[sfs_feat_min][C_min]),
                                        int(C[sfs_feat_min][C_min])]
                    else:
                        n1, C = [int(n1[int(sfs_feat_min)]),
                                      int(C[int(sfs_feat_min)])]
                else:
                    n1, C = [int(n1), int(C)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                C_chosen = C_parameter_LogReg[C]
                
                # Save the best validation erro
                val_error = val_err_logreg[n1, C]
                
                # Get the subsets chosen
                chosen_feats = val_feat_logreg[n1,C][~np.isnan(val_feat_logreg[n1,C])].astype(int)
                sfs_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(sfs_features)
                x_train_mRMR2_sfs = X_train[sfs_features]
                
                # Fit on all training data
                model = LogisticRegression(penalty="l2", C=C_chosen, max_iter = 50000)
                model = model.fit(x_train_mRMR2_sfs,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_sfs)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[sfs_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,1,:] = [train_error,val_error,test_error]
                LogReg_model_par = [mRMR_chosen1,C_chosen,n_final_feat]
                LogReg_model = model
                LogReg_y_pred = [[model_train_y],[y_pred]]
                
                ### RF
                n1, t, d = np.where(val_err_rf==np.max(val_err_rf))
                
                if len(d) > 1:
                    print("There are multiple RF runs with the same validation error")
                    print("Choosing run with lowest depth to alleviate overfitting")
                    d_min = np.where(d==np.min(d))[0]
                    
                    if len(d_min) > 1:
                        print("Multiple RF runs with same number number of depths")
                        print("Choosing run with lowest trees to alleviate overfitting")
                        t_min = np.argmin(t[d_min]) # argmin just takes the first
                        # If there are multiple with same parameters and validation error it is most likely the same
                        n1, t, d = [int(n1[d_min][t_min]),
                                        int(t[d_min][t_min]), int(d[d_min][t_min])]
                    else:
                        n1, t, d = [int(n1[int(d_min)]),
                                      int(t[int(d_min)]), int(d[int(d_min)])]
                else:
                    n1, t, d = [int(n1), int(t), int(d)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                t_chosen = trees[t]
                d_chosen = depth[d]
                
                # Save the best validation error
                val_error = val_err_rf[n1, t, d]
                
                # Get the chosen features and feature importances
                chosen_feats = val_feat_rf[n1,t,d][~np.isnan(val_feat_rf[n1,t,d])].astype(int)
                rf_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(rf_features)
                x_train_mRMR2_rf = X_train[rf_features]
                
                rf_feat_importances = val_feat_import_rf[n1,t,d][~np.isnan(val_feat_import_rf[n1,t,d])]
                
                # Fit on all training data
                model = RandomForestClassifier(n_estimators=t_chosen, max_features="sqrt", max_depth=d_chosen,
                                                                n_jobs=1, random_state=None)
                model = model.fit(x_train_mRMR2_rf,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_rf)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[rf_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,2,:] = [train_error,val_error,test_error]
                RF_model_par = [mRMR_chosen1,t_chosen,d_chosen]
                RF_model = model
                RF_y_pred = [[model_train_y],[y_pred]]
                
                # Save the rest
                model_par00 = [SVM_model_par,LogReg_model_par,RF_model_par]
                final_models00 = [SVM_model,LogReg_model,RF_model]
                final_features00 = [rfe_features, sfs_features, [rf_features,rf_feat_importances]]
                final_y_preds00 = [SVM_y_pred,LogReg_y_pred,RF_y_pred]
                data_splits00 = [X_train,y_train,X_test,y_test,standardizer.mean_,standardizer.scale_]
                
                # Save the results for the specific feature
                res = [temp_feat, model_par00, final_models00, final_features00, final_y_preds00, data_splits00]
                Ind_feat_clf00.append(res)
                print("Finished outer fold {} out of {} for rep: {} for feat {}".format(Outer_counter+1,k_out,rep+1,temp_feat))
            
            # Check that no features were excluded when checking for wrongly chosen
            total_features = 0
            for feat_c in range(len(feat_counter)):
                total_features += feat_counter[feat_c][1]
            assert total_features == X_train.shape[1]
            # Save results over outer folds
            Ind_feat_clf0.append(Ind_feat_clf00)
            
            print("Finished outer fold {} out of {} for rep: {} for all features".format(Outer_counter+1,k_out,rep+1))
            # Move counter
            Outer_counter += 1
        
        out = [accuracy_arr0, Ind_feat_clf0] # [Rep][Outer CV][Feature][Variable]
        # Print total progress
        print("Finished outer fold repetition {} out of {}".format(rep+1,n_repetitions))
        
        # Get current time
        c_time2 = time.localtime()
        c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
        print("Started", c_time1, "\nCurrent Time",c_time2)
        
        return rep, out
    
    Ind_feat_clf = [0]*n_repetitions
    with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
        for rep, result in executor.map(Each_feat_10rep_10x10CV, range(n_repetitions)): # Function and arguments
            Ind_feat_clf[rep] = result # [acc or parameters], for parameters: [Rep][Outer CV][Feature][Variable]
            # Save results to file and overwrite when new results arrive
            with open(Model_savepath+"Each_feat_Rep10_10x10CV_mRMR_SVM_LogReg_RF_results_070222.pkl", "wb") as filehandle:
                pickle.dump(Ind_feat_clf, filehandle)
    
    # %% Sparse clustering of all EEG features to look for subtypes
    EEG_features_df, EEG_features_name_list = load_features_df()
    
    # Add group status
    Group_status = np.array([0]*EEG_features_df.shape[0]) # CTRL = 0
    Group_status[np.array([i in cases for i in EEG_features_df["Subject_ID"]])] = 1 # PTSD = 1
    EEG_features_df.insert(1, "Group_status", Group_status)
    
    # Only use PTSD patient group
    EEG_features_df2 = EEG_features_df.loc[EEG_features_df["Group_status"]==1,:]
    
    Subject_info_cols = ["Subject_ID","Group_status"]
    
    # Standardize the values
    X = np.array(EEG_features_df2.copy().drop(Subject_info_cols, axis=1))
    standardizer = preprocessing.StandardScaler().fit(X)
    X = standardizer.transform(X)
    
    # Use gridsearch and permutations to estimate gap statistic and use it to 
    # determine number of clusters and sparsity s
    # I will use 100 permutations and test 2 to 6 clusters as Zhang 2020
    max_clusters = 6
    n_sparsity_feat = 20
    perm_res = []
    
    Timestamps = []
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print(c_time1)
    Timestamps.append(c_time1)
    for k in range(1,max_clusters):
        # Cannot permute with 1 cluster
        n_clusters = k+1
        perm = pysparcl.cluster.permute_modified(X, k=n_clusters, verbose=True,
                                                 nvals=n_sparsity_feat, nperms=100)
        perm_res.append(perm)
        # Get current time
        c_time2 = time.localtime()
        c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
        print("Started", c_time1, "\nCurrent Time",c_time2)
        Timestamps.append(c_time2)
    
    # Save the results
    with open(Feature_savepath+"All_feats_no_coh_plv_kmeans_perm.pkl", "wb") as file:
        pickle.dump(perm_res, file)
    
    # # Load
    # with open(Feature_savepath+"All_feats_no_coh_plv_kmeans_perm.pkl", "rb") as file:
    #     perm_res = pickle.load(file)
    
    # Convert results to array
    perm_res_arr = np.zeros((len(perm_res)*n_sparsity_feat,4))
    for i in range(len(perm_res)):
        _, gaps, sdgaps, wbounds, _ = perm_res[i].values()
        for i2 in range(n_sparsity_feat):
            perm_res_arr[n_sparsity_feat*i+i2,0] = i+2 # cluster size
            perm_res_arr[n_sparsity_feat*i+i2,1] = gaps[i2] # gap statistic
            perm_res_arr[n_sparsity_feat*i+i2,2] = sdgaps[i2] # gap statistic std
            perm_res_arr[n_sparsity_feat*i+i2,3] = wbounds[i2] # sparsity feature s
    
    # For each sparsity s, determine best k using one-standard-error criterion
    # Meaning the cluster and sparsity is chosen for the smallest value of k for a fixed s
    # that fulfill Gap(k) >= Gap(k+1)-std(k+1)
    def one_standard_deviation_search(gaps, std):
        best_gaps = np.argmax(gaps)
        current_gaps = gaps[best_gaps]
        current_std = std[best_gaps]
        current_gaps_idx = best_gaps
        while (gaps[current_gaps_idx-1] >= current_gaps - current_std):
            if current_gaps_idx == 0:
                break
            else:
                current_gaps_idx -= 1
                current_gaps = gaps[current_gaps_idx]
                current_std = std[current_gaps_idx]
        out = current_gaps, current_std, current_gaps_idx
        return out
    
    best_ks = np.zeros((n_sparsity_feat, 2))
    all_s = np.unique(perm_res_arr[:,3])
    plt.figure(figsize=(12,12))
    for i2 in range(n_sparsity_feat):
        current_s = all_s[i2]
        gaps = perm_res_arr[perm_res_arr[:,3] == current_s,1]
        std = perm_res_arr[perm_res_arr[:,3] == current_s,2]
        _, _, idx = one_standard_deviation_search(gaps, std)
        # Save to array
        best_ks[i2,0] = current_s
        best_ks[i2,1] = perm_res_arr[perm_res_arr[:,3] == current_s,0][idx]
        # Plot gap
        plt.errorbar(perm_res_arr[perm_res_arr[:,3] == current_s,0].astype("int"),
                 gaps, yerr=std, capsize=5, label = np.round(current_s,3))
    plt.title("Gap statistic for different fixed s")
    plt.legend(loc=1)
    plt.xlabel("Number of clusters")
    plt.ylabel("Gap statistic")
    
    best_k = int(scipy.stats.mode(best_ks[:,1])[0])
    
    # Determine s using fixed k as lowest s within 1 std of max gap statistic
    # According to Witten & Tibshirani, 2010
    best_gaps_idx = np.argmax(perm_res_arr[perm_res_arr[:,0] == best_k,1])
    best_gaps = perm_res_arr[perm_res_arr[:,0] == best_k,1][best_gaps_idx]
    best_gaps_std = perm_res_arr[perm_res_arr[:,0] == best_k,2][best_gaps_idx]
    one_std_crit = perm_res_arr[perm_res_arr[:,0] == best_k,1]>=best_gaps-best_gaps_std
    
    best_s = np.array([perm_res_arr[perm_res_arr[:,0] == best_k,3][one_std_crit][0]])
    
    # Perform clustering with k clusters
    sparcl = pysparcl.cluster.kmeans(X, k=best_k, wbounds=best_s)[0]
    
    # # Save the results
    # with open(Feature_savepath+"All_feats_sparse_kmeans.pkl", "wb") as file:
    #     pickle.dump(sparcl, file)
    
    with open(Feature_savepath+"All_feats_sparse_kmeans.pkl", "rb") as file:
        sparcl = pickle.load(file)
    
    # %% Sparse kmeans -> mRMR -> SVM/RF/LogReg with L2
    # Using sparse kmeans selected features, only eyes closed as they were primarily chosen
    # Prediction of subtype 1
    EEG_features_df, EEG_features_name_list = load_features_df()
    
    with open(Feature_savepath+"All_feats_sparse_kmeans.pkl", "rb") as file:
        sparcl = pickle.load(file)
    
    # Use concatenated features
    EEG_features_name_list = [['Power'],
                              ['Frontal Theta Beta Ratio',
                              'Asymmetry'],
                              ['Peak Alpha Frequency',
                              'Global Peak Alpha Frequency'],
                              ["1/f exponent"],
                              ['imcoh'],
                              ['wpli'],
                              ['Power Envelope Correlation'],
                              ['Microstate Transition',
                              'Microstate Ratio Time',
                              'Microstate Entropy'],
                              ["Granger Causality"],
                              ['DFA Exponent',
                              'Global DFA Exponent']]
    
    # Add group status
    Group_status = np.array([0]*EEG_features_df.shape[0]) # CTRL = 0
    Group_status[np.array([i in cases for i in EEG_features_df["Subject_ID"]])] = 1 # PTSD = 1
    EEG_features_df.insert(1, "Group_status", Group_status)
    
    # Only keep PTSD subtype 1 by dropping subtype 2
    subtype1 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==0]
    subtype2 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==1]
    EEG_features_df = EEG_features_df.set_index("Subject_ID")
    EEG_features_df = EEG_features_df.drop(subtype2)
    EEG_features_df = EEG_features_df.reset_index()
    # Check it was dropped correctly
    assert all(subtype1 == EEG_features_df.loc[EEG_features_df["Group_status"] == 1,"Subject_ID"])
    
    # Subject info columns
    Subject_info_cols = list(EEG_features_df.columns[0:2])
    n_subject_info_cols = len(Subject_info_cols)
    n_discrete_cols = 2
    
    # Get features from sparse kmeans
    nonzero_idx = sparcl["ws"].nonzero()
    sparcl_features = EEG_features_df.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]
    sum(sparcl_features.str.contains("Eyes Open"))/len(sparcl_features) # less than 3% are EO
    # Only use eyes closed (2483 features)
    sparcl_features = sparcl_features[sparcl_features.str.contains("Eyes Closed")]
    EEG_features_df = pd.concat([EEG_features_df[Subject_info_cols],EEG_features_df[sparcl_features]],axis=1)
    
    # To ensure proper stratification into train/test set I will stratify using group status and study status
    # A variable that encodes for this is created
    n_studies = 3
    study_group_status = EEG_features_df["Group_status"].copy()
    for i in range(n_studies):
        # Get study index
        study_idx = (EEG_features_df["Subject_ID"]>=(i+1)*100000)&(EEG_features_df["Subject_ID"]<(i+2)*100000)
        # Assign label
        study_group_status[(study_idx)&(EEG_features_df["Group_status"]==0)] = 2*i # CTRL
        study_group_status[(study_idx)&(EEG_features_df["Group_status"]==1)] = 2*i+1 # PTSD
    
    # Target variable
    Target = ["Group_status"]
    Target_col = EEG_features_df.iloc[:,1:].columns.isin(Target)
    Target_col_idx = np.where(Target_col == True)[0]
    
    # Make 3 models and save them to use enseemble in the end
    CLF_models = ["SVM", "LogReg", "RF"]
    n_models = len(CLF_models)
    
    # Repeat the classification to see if I just got a lucky seed
    n_repetitions = 10
    k_out = 10
    accuracy_arr = np.zeros((n_repetitions,k_out,n_models,3))
    model_par = []
    final_models = []
    final_features = []
    final_y_preds = []
    np.random.seed(42)
    
    # Prepare the splits beforehand to make sure the repetitions are not the same
    Rep_Outer_CV = []
    Rep_Outer_CV_test = [] # a list with only the test indices
    for rep in range(n_repetitions):
        skf = StratifiedKFold(n_splits=k_out, shuffle=True, random_state=(rep+1)*123) # using 10% equals around 21 test subjects
        # I am also using converting it to an iterable list instad of the generator to promote reuse
        Outer_CV = []
        Outer_CV_test = []
        for train_index, test_index in skf.split(EEG_features_df,study_group_status):
            Outer_CV.append([train_index,test_index])
            Outer_CV_test.append(test_index)
        Rep_Outer_CV.append(Outer_CV)
        Rep_Outer_CV_test.append(Outer_CV_test)
    # Check none of the repetitions are the same by using only the test sets
    # The list is first flattened
    Rep_Outer_CV_test_flat = [item for sublist in Rep_Outer_CV_test for item in sublist]
    # All elements are converted to strings
    # This makes it easier to look for uniques, and the indices are already in numerical order
    Rep_Outer_CV_test_flat_str = ["".join([str(x) for x in ele])for ele in Rep_Outer_CV_test_flat]
    
    def allUnique(x):
        seen = set()
        return not any(i in seen or seen.add(i) for i in x)
    assert allUnique(Rep_Outer_CV_test_flat_str)
    
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print(c_time1)
    
    for rep in range(n_repetitions):
        # The outer fold CV has already been saved as lists
        Outer_CV = Rep_Outer_CV[rep]
        # Pre-allocate memory
        model_par0 = []
        final_models0 = []
        final_features0 = []
        final_y_preds0 = []
        Outer_counter = 0
        for train_index, test_index in Outer_CV:
            test_df = EEG_features_df.iloc[test_index]
            train_df = EEG_features_df.iloc[train_index]
            
            # Training data will be standardized
            standardizer = preprocessing.StandardScaler().fit(train_df.iloc[:,n_discrete_cols:])
    
            train_df_standard = train_df.copy()
            train_df_standard.iloc[:,n_discrete_cols:] = standardizer.transform(train_df_standard.iloc[:,n_discrete_cols:])
            # Test data will also be standardized but using mean and std from training data
            test_df_standard = test_df.copy()
            test_df_standard.iloc[:,n_discrete_cols:] = standardizer.transform(test_df_standard.iloc[:,n_discrete_cols:])
            
            # Get the training data
            X_train = train_df_standard.copy().drop(Subject_info_cols, axis=1)
            y_train = train_df_standard[Target]
            # Get test data
            X_test = test_df_standard.copy().drop(Subject_info_cols, axis=1)
            y_test = test_df_standard[Target]
            
            # Prepare initial filtering of feature types to alleviate imbalance in number of features
            # Use a variable that is optimized using inner CV
            n_feat_mRMR1 = [30,40,50,60]
            # Max features from mRMR for each eye status
            max_mRMR_features = n_feat_mRMR1[-1]
            
            # mRMR on the all sparse kmeans selected features
            filter_feat_selector = mRMR_feature_select(X_train.to_numpy(),y_train.to_numpy(),
                                                   num_features_to_select=max_mRMR_features,
                                                   K_MAX=1000,n_jobs=-1,verbose=False)
            
            # Part 2 with second mRMR and classifiers in loop
            k_fold = 10
            skf2 = StratifiedKFold(n_splits=k_fold, shuffle=True, random_state=(rep+1)*123) # using 10% equals around 21 test subjects
            # I am also using converting it to an iterable list instad of the generator to promote reuse
            Inner_CV = []
            for train_index2, test_index2 in skf2.split(train_df,study_group_status.iloc[train_index]):
                Inner_CV.append([train_index2,test_index2])
            
            # SVM with L2-norm (it is by default squared)
            # Prepare hyper parameters
            exponent = np.linspace(-3,1,9)
            exponent = np.round(exponent,5) # sometimes linspace are not so exact
            C_parameter_SVM = np.power(np.array([10]*len(exponent)),exponent)
            kernels = ["linear"] # error when using rbf and RFECV
            # rbf also overfit easier, whereas linear empirically works better in high D data
            
            # Sequential Feature Selection for Logistic Regression
            # In-built model selection CV
            # The L2 is the inverse of C for LogReg
            exponent = np.linspace(-3,1,9)
            exponent = np.round(exponent,5) # sometimes linspace are not so exact
            C_parameter_LogReg = np.power(np.array([10]*len(exponent)),exponent)
            
            # Random forest classifier
            # Prepare hyper parameters
            trees = np.array([10, 100, 500, 1000])
            depth = np.linspace(1,2,2) # using more depth leads to a lot of overfitting
            
            # Prepare arrays for validation errors
            val_err_svm = np.zeros((len(n_feat_mRMR1),len(C_parameter_SVM),len(kernels)))
            val_feat_svm = np.zeros((len(n_feat_mRMR1),len(C_parameter_SVM),len(kernels),max_mRMR_features))
            val_feat_svm.fill(np.nan)
            
            val_err_logreg = np.zeros((len(n_feat_mRMR1),len(C_parameter_LogReg)))
            val_feat_logreg = np.zeros((len(n_feat_mRMR1),len(C_parameter_LogReg),max_mRMR_features))
            val_feat_logreg.fill(np.nan)
            
            val_err_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth)))
            val_feat_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth),max_mRMR_features))
            val_feat_rf.fill(np.nan)
            val_feat_import_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth),max_mRMR_features))
            val_feat_import_rf.fill(np.nan)
            
            for n1 in range(len(n_feat_mRMR1)):
                # Get selected features from mRMR
                filter_features = X_train.columns[filter_feat_selector[0:n_feat_mRMR1[n1]]]
                
                X_train_mRMR = X_train[filter_features].copy()
        
                # SVM with recursive feature elemination 
                # Stratified CV to find best regularization strength and number of features
                # CV is built-in RFECV
                min_features_to_select = 1
                # Using normal for loop as RFECV has inbuilt multiprocessing
                for C in range(len(C_parameter_SVM)):
                    for K in range(len(kernels)):
                        # Define the model
                        svc = SVC(C=C_parameter_SVM[C], kernel=kernels[K], tol=1e-3, cache_size=4000)
                        # Perform recurive feature elimination with in-built CV
                        rfecv = RFECV(estimator=svc, n_jobs=-1, scoring="balanced_accuracy",
                                      cv=Inner_CV,
                                      min_features_to_select=min_features_to_select)
                        rfecv.fit(X_train_mRMR,y_train.to_numpy().ravel())
                        # Get CV score
                        err = rfecv.grid_scores_[rfecv.n_features_-min_features_to_select]
                        # Save results for hyperparameter optimization
                        val_err_svm[n1,C,K] = err
                        # Save the features chosen by RFE based on index from pre mRMR
                        rfe_feat_idx = np.where(X_train.columns.isin(filter_features[rfecv.support_]))[0]
                        val_feat_svm[n1,C,K,0:len(rfe_feat_idx)] = rfe_feat_idx
                        
                        # print("Finished SVM run {} out of {}".format(C+1,np.prod([len(C_parameter_SVM),len(kernels)])))
                
                # Logistic regression with sequential forward selection
                # In-bult CV
                k_features = np.arange(1,n_feat_mRMR1[n1]+1,1) # try up to all features
                inner_cv_scores = np.zeros((len(C_parameter_LogReg),len(k_features)))
                for C in range(len(C_parameter_LogReg)):
                    LogReg = LogisticRegression(penalty="l2", C=C_parameter_LogReg[C],
                                                max_iter = 50000)
                    sfs = SFS(LogReg, k_features = (k_features[0],k_features[-1]),
                              forward = True, scoring = "balanced_accuracy",
                              verbose = 0, floating = False,
                              cv = Inner_CV, n_jobs = -1)
                
                    sfs = sfs.fit(X_train_mRMR, y_train.to_numpy().ravel())
                    # Save CV scores for each SFS step
                    for feat in range(len(k_features)):
                        inner_cv_scores[C,feat] = sfs.get_metric_dict()[k_features[feat]]["avg_score"]
                    
                    # Find the best number of features
                    # I am rounding to make it more smooth and disregard small improvements
                    K = np.where(np.round(inner_cv_scores[C,:],2)==np.max(np.round(inner_cv_scores[C,:],2)))[0]
                    if len(K) > 1:
                        K = K[np.where(K == np.min(K))[0]]
                    err = inner_cv_scores[C,K]
                    # Save validation error and features
                    val_err_logreg[n1,C] = err
                    # Save the features chosen by RFE based on index from pre mRMR
                    sfs_feat_idx = np.where(X_train.columns.isin(sfs.subsets_[int(K)+1]["feature_names"]))[0] # K+1 since it starts with 1 feature
                    val_feat_logreg[n1,C,0:len(sfs_feat_idx)] = sfs_feat_idx
                    
                    # print("Finished LogReg run {} out of {}".format(C+1,len(C_parameter_LogReg)))
                
                # Random forest
                model_test_err = np.zeros((k_fold,len(trees),len(depth)))
                RF_feat_import = np.zeros((k_fold,len(trees),len(depth),X_train_mRMR.shape[1]))
                
                counter = 0
                for cv in range(k_fold):
                    # Retrieve CV indices
                    train_index_rf = Inner_CV[cv][0]
                    test_index_rf = Inner_CV[cv][1]
                    # Retrieve datasets
                    X_train2 = X_train_mRMR.iloc[train_index_rf]; X_test2 = X_train_mRMR.iloc[test_index_rf]
                    y_train2 = y_train.to_numpy().ravel()[train_index_rf]; y_test2 = y_train.to_numpy().ravel()[test_index_rf]
                    
                    for t in range(len(trees)):
                        for d in range(len(depth)):
                            RF = RandomForestClassifier(n_estimators=trees[t], max_features="sqrt", max_depth=depth[d],
                                                        n_jobs=-1, random_state=None)
                            RF.fit(X_train2.to_numpy(),y_train2)
                            # Validation error
                            RF_y = RF.predict(X_test2.to_numpy())
                            err = balanced_accuracy_score(y_test2, RF_y)
                            # Save to array
                            model_test_err[cv,t,d] = err
                            # Save feature importance array
                            RF_feat_import[cv,t,d] = RF.feature_importances_
                    counter += 1
                    # print("Finished RF run {} out of {}".format(counter, k_fold))
                # Average the errors over the CV folds
                model_test_err_mean = np.mean(model_test_err, axis=0)
                val_err_rf[n1,:,:] = model_test_err_mean
                # Average the feature importances over the CV folds
                RF_feat_import = np.mean(RF_feat_import, axis=0)
                val_feat_import_rf[n1,:,:,0:n_feat_mRMR1[n1]] = RF_feat_import
                # Save the features used by the RF based on index from pre mRMR
                rf_feat_idx = np.where(X_train.columns.isin(filter_features))[0]
                val_feat_rf[n1,:,:,0:len(rf_feat_idx)] = rf_feat_idx
                
                print("Finished {}% of total run".format((n1+1)*1/len(n_feat_mRMR1)*100))
            
            # Choose the optimal parameters
            ### SVM
            n1, C, K = np.where(val_err_svm==np.max(val_err_svm))
            
            if len(C) > 1:
                print("There are multiple SVM runs with the same validation error")
                print("Choosing run with fewest features to alleviate overfitting")
                rfe_feat_len = []
                for i2 in range(len(C)):
                    n1_temp = int(n1[i2])
                    C_temp = int(C[i2])
                    K_temp = int(K[i2])
                    temp_feats = val_feat_svm[n1_temp,C_temp,K_temp][~np.isnan(val_feat_svm[n1_temp,C_temp,K_temp])].astype(int)
                    rfe_feat_len.append(len(temp_feats))
                
                rfe_feat_min = np.where(rfe_feat_len==np.min(rfe_feat_len))[0]
                if len(rfe_feat_min) > 1:
                    print("Multiple SVM runs with same number of fewest features")
                    print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                    C_min = np.argmin(C[rfe_feat_min])
                    n1, C, K = [int(n1[rfe_feat_min][C_min]),
                                    int(C[rfe_feat_min][C_min]), int(K[rfe_feat_min][C_min])]
                else:
                    n1, C, K = [int(n1[int(rfe_feat_min)]),
                                 int(C[int(rfe_feat_min)]), int(K[int(rfe_feat_min)])]
            else:
                n1, C, K = [int(n1), int(C), int(K)]
            
            mRMR_chosen1 = n_feat_mRMR1[n1]
            C_chosen = C_parameter_SVM[C]
            K_chosen = kernels[K]
            
            # Save the best validation erro
            val_error = val_err_svm[n1, C, K]
            
            # Get the subsets chosen
            chosen_feats = val_feat_svm[n1,C,K][~np.isnan(val_feat_svm[n1,C,K])].astype(int)
            rfe_features = list(X_train.columns[chosen_feats])
            n_final_feat = len(rfe_features)
            x_train_mRMR_rfe = X_train[rfe_features]
            
            # Fit on all training data
            model = SVC(C=C_chosen, kernel=K_chosen, tol=1e-3, cache_size=4000)
            model = model.fit(x_train_mRMR_rfe,y_train.to_numpy().ravel())
            # Get training output
            model_train_y = model.predict(x_train_mRMR_rfe)
            # Get training error
            train_error = balanced_accuracy_score(y_train, model_train_y)
            
            # Get prediction of test data
            y_pred = model.predict(X_test[rfe_features])
            # Use model to predict class on test data
            test_error = balanced_accuracy_score(y_test, y_pred)
            
            # Save or prepare to save
            accuracy_arr[rep,Outer_counter,0,:] = [train_error,val_error,test_error]
            SVM_model_par = [mRMR_chosen1,C_chosen,n_final_feat,K_chosen]
            SVM_model = model
            SVM_y_pred = [[model_train_y],[y_pred]]
            
            ### LogReg with SFS
            n1, C = np.where(val_err_logreg==np.max(val_err_logreg))
            if len(C) > 1:
                print("There are multiple LogReg runs with the same validation error")
                print("Choosing run with fewest features to alleviate overfitting")
                sfs_feat_len = []
                for i2 in range(len(C)):
                    n1_temp = int(n1[i2])
                    C_temp = int(C[i2])
                    temp_feats = val_feat_logreg[n1_temp,C_temp][~np.isnan(val_feat_logreg[n1_temp,C_temp])].astype(int)
                    sfs_feat_len.append(len(temp_feats))
                
                sfs_feat_min = np.where(sfs_feat_len==np.min(sfs_feat_len))[0]
                if len(sfs_feat_min) > 1:
                    print("Multiple LogReg runs with same number of fewest features")
                    print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                    C_min = np.argmin(C[sfs_feat_min])
                    n1, C = [int(n1[sfs_feat_min][C_min]),
                                    int(C[sfs_feat_min][C_min])]
                else:
                    n1, C = [int(n1[int(sfs_feat_min)]),
                                 int(C[int(sfs_feat_min)])]
            else:
                n1, C = [int(n1), int(C)]
            
            mRMR_chosen1 = n_feat_mRMR1[n1]
            C_chosen = C_parameter_LogReg[C]
            
            # Save the best validation erro
            val_error = val_err_logreg[n1, C]
            
            # Get the subsets chosen
            chosen_feats = val_feat_logreg[n1,C][~np.isnan(val_feat_logreg[n1,C])].astype(int)
            sfs_features = list(X_train.columns[chosen_feats])
            n_final_feat = len(sfs_features)
            x_train_mRMR_sfs = X_train[sfs_features]
            
            # Fit on all training data
            model = LogisticRegression(penalty="l2", C=C_chosen, max_iter = 50000)
            model = model.fit(x_train_mRMR_sfs,y_train.to_numpy().ravel())
            # Get training output
            model_train_y = model.predict(x_train_mRMR_sfs)
            # Get training error
            train_error = balanced_accuracy_score(y_train, model_train_y)
            
            # Get prediction of test data
            y_pred = model.predict(X_test[sfs_features])
            # Use model to predict class on test data
            test_error = balanced_accuracy_score(y_test, y_pred)
            
            # Save or prepare to save
            accuracy_arr[rep,Outer_counter,1,:] = [train_error,val_error,test_error]
            LogReg_model_par = [mRMR_chosen1,C_chosen,n_final_feat]
            LogReg_model = model
            LogReg_y_pred = [[model_train_y],[y_pred]]
            
            ### RF
            n1, t, d = np.where(val_err_rf==np.max(val_err_rf))
            
            if len(d) > 1:
                print("There are multiple RF runs with the same validation error")
                print("Choosing run with lowest depth to alleviate overfitting")
                d_min = np.where(d==np.min(d))[0]
                
                if len(d_min) > 1:
                    print("Multiple RF runs with same number number of depths")
                    print("Choosing run with lowest trees to alleviate overfitting")
                    t_min = np.argmin(t[d_min]) # argmin just takes the first
                    # If there are multiple with same parameters and validation error it is most likely the same
                    n1, t, d = [int(n1[d_min][t_min]),
                                    int(t[d_min][t_min]), int(d[d_min][t_min])]
                else:
                    n1, t, d = [int(n1[int(d_min)]),
                                 int(t[int(d_min)]), int(d[int(d_min)])]
            else:
                n1, t, d = [int(n1), int(t), int(d)]
            
            mRMR_chosen1 = n_feat_mRMR1[n1]
            t_chosen = trees[t]
            d_chosen = depth[d]
            
            # Save the best validation error
            val_error = val_err_rf[n1, t, d]
            
            # Get the chosen features and feature importances
            chosen_feats = val_feat_rf[n1,t,d][~np.isnan(val_feat_rf[n1,t,d])].astype(int)
            rf_features = list(X_train.columns[chosen_feats])
            n_final_feat = len(rf_features)
            x_train_mRMR_rf = X_train[rf_features]
            
            rf_feat_importances = val_feat_import_rf[n1,t,d][~np.isnan(val_feat_import_rf[n1,t,d])]
            
            # Fit on all training data
            model = RandomForestClassifier(n_estimators=t_chosen, max_features="sqrt", max_depth=d_chosen,
                                                            n_jobs=-1, random_state=None)
            model = model.fit(x_train_mRMR_rf,y_train.to_numpy().ravel())
            # Get training output
            model_train_y = model.predict(x_train_mRMR_rf)
            # Get training error
            train_error = balanced_accuracy_score(y_train, model_train_y)
            
            # Get prediction of test data
            y_pred = model.predict(X_test[rf_features])
            # Use model to predict class on test data
            test_error = balanced_accuracy_score(y_test, y_pred)
            
            # Save or prepare to save
            accuracy_arr[rep,Outer_counter,2,:] = [train_error,val_error,test_error]
            RF_model_par = [mRMR_chosen1,t_chosen,d_chosen]
            RF_model = model
            RF_y_pred = [[model_train_y],[y_pred]]
            
            # Save the rest
            model_par0.append([SVM_model_par,LogReg_model_par,RF_model_par])
            final_models0.append([SVM_model,LogReg_model,RF_model])
            final_features0.append([rfe_features, sfs_features, [rf_features,rf_feat_importances]])
            final_y_preds0.append([SVM_y_pred,LogReg_y_pred,RF_y_pred])
            # Move counter
            Outer_counter += 1
            print("Finished outer fold {} out of {} for rep: {}".format(Outer_counter,k_out,rep+1))
        # Save results from all outer folds
        model_par.append(model_par0)
        final_models.append(final_models0)
        final_features.append(final_features0)
        final_y_preds.append(final_y_preds0)
        # Save results to file
        Rep_mRMR2_SVM_LogReg_RF = [accuracy_arr, model_par, final_models, final_features, final_y_preds]
        # Run with variable feat in first and second mRMR
        with open(Model_savepath+"Rep10_10x10CV_SparsKmean_mRMR_SVM_LogReg_RF_Subtype1_results_210122.pkl", "wb") as filehandle:
            pickle.dump(Rep_mRMR2_SVM_LogReg_RF, filehandle)
        
        # Get current time
        c_time2 = time.localtime()
        c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
        print("Started", c_time1, "\nCurrent Time",c_time2)
        
        # Print total progress
        print("Finished outer fold repetition {} out of {}".format(rep+1,n_repetitions))
    
    
    # %% Each feat mRMR -> mRMR -> SVM/RF/LogReg with L2
    # Using each feature (of the sparse Kmeans EC chosen ones)
    # For Subtype 1
    # 10 repetitions of 10 fold outer and 20 fold inner two-layer CV
    # Prediction of subtype 1
    EEG_features_df, EEG_features_name_list = load_features_df() # removed coh and plv and renamed Hurst in v4
    
    with open(Feature_savepath+"All_feats_sparse_kmeans.pkl", "rb") as file:
        sparcl = pickle.load(file)
    
    # Add group status
    Group_status = np.array([0]*EEG_features_df.shape[0]) # CTRL = 0
    Group_status[np.array([i in cases for i in EEG_features_df["Subject_ID"]])] = 1 # PTSD = 1
    EEG_features_df.insert(1, "Group_status", Group_status)
    
    # Only keep PTSD subtype 1 by dropping subtype 2
    PTSD_idx = np.array([i in cases for i in Subject_id])
    CTRL_idx = np.array([not i in cases for i in Subject_id])
    subtype1 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==0]
    subtype2 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==1]
    EEG_features_df = EEG_features_df.set_index("Subject_ID")
    EEG_features_df = EEG_features_df.drop(subtype2)
    EEG_features_df = EEG_features_df.reset_index()
    # Check it was dropped correctly
    assert all(subtype1 == EEG_features_df.loc[EEG_features_df["Group_status"] == 1,"Subject_ID"])
    
    # Subject info columns
    Subject_info_cols = list(EEG_features_df.columns[0:2])
    n_subject_info_cols = len(Subject_info_cols)
    n_discrete_cols = 2
    
    # Get features from sparse kmeans
    nonzero_idx = sparcl["ws"].nonzero()
    sparcl_features = EEG_features_df.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]
    sum(sparcl_features.str.contains("Eyes Open"))/len(sparcl_features) # less than 3% are EO
    # Only use eyes closed (2483 features)
    sparcl_features = sparcl_features[sparcl_features.str.contains("Eyes Closed")]
    EEG_features_df = pd.concat([EEG_features_df[Subject_info_cols],EEG_features_df[sparcl_features]],axis=1)
    
    # To ensure proper stratification into train/test set I will stratify using group status and study status
    # A variable that encodes for this is created
    n_studies = 3
    study_group_status = EEG_features_df["Group_status"].copy()
    for i in range(n_studies):
        # Get study index
        study_idx = (EEG_features_df["Subject_ID"]>=(i+1)*100000)&(EEG_features_df["Subject_ID"]<(i+2)*100000)
        # Assign label
        study_group_status[(study_idx)&(EEG_features_df["Group_status"]==0)] = 2*i # CTRL
        study_group_status[(study_idx)&(EEG_features_df["Group_status"]==1)] = 2*i+1 # PTSD
    
    # Target variable
    Target = ["Group_status"]
    Target_col = EEG_features_df.iloc[:,1:].columns.isin(Target)
    Target_col_idx = np.where(Target_col == True)[0]
    
    # Make 3 models and save them to use enseemble in the end
    CLF_models = ["SVM", "LogReg", "RF"]
    n_models = len(CLF_models)
    
    # Repeat the classification to see if I just got a lucky seed
    n_repetitions = 10
    k_out = 10
    accuracy_arr = np.zeros((n_repetitions,k_out,n_models,3))
    model_par = []
    final_models = []
    final_features = []
    final_y_preds = []
    np.random.seed(42)
    
    # Prepare the splits beforehand to make sure the repetitions are not the same
    Rep_Outer_CV = []
    Rep_Outer_CV_test = [] # a list with only the test indices
    for rep in range(n_repetitions):
        skf = StratifiedKFold(n_splits=k_out, shuffle=True, random_state=(rep+1)*123) # using 10% equals around 21 test subjects
        # I am also using converting it to an iterable list instad of the generator to promote reuse
        Outer_CV = []
        Outer_CV_test = []
        for train_index, test_index in skf.split(EEG_features_df,study_group_status):
            Outer_CV.append([train_index,test_index])
            Outer_CV_test.append(test_index)
        Rep_Outer_CV.append(Outer_CV)
        Rep_Outer_CV_test.append(Outer_CV_test)
    # Check none of the repetitions are the same by using only the test sets
    # The list is first flattened
    Rep_Outer_CV_test_flat = [item for sublist in Rep_Outer_CV_test for item in sublist]
    # All elements are converted to strings
    # This makes it easier to look for uniques, and the indices are already in numerical order
    Rep_Outer_CV_test_flat_str = ["".join([str(x) for x in ele])for ele in Rep_Outer_CV_test_flat]
    
    def allUnique(x):
        seen = set()
        return not any(i in seen or seen.add(i) for i in x)
    assert allUnique(Rep_Outer_CV_test_flat_str)
    
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print(c_time1)
    
    def Each_feat_10rep_10x10CV(rep):
        # The outer fold CV has already been saved as lists
        Outer_CV = Rep_Outer_CV[rep]
        # Pre-allocate memory
        Ind_feat_clf0 = []
        accuracy_arr0 = np.zeros((k_out,len(EEG_features_name_list),n_models,3))
        Outer_counter = 0
        for train_index, test_index in Outer_CV:
            test_df = EEG_features_df.iloc[test_index]
            train_df = EEG_features_df.iloc[train_index]
            
            # Training data will be standardized
            standardizer = preprocessing.StandardScaler().fit(train_df.iloc[:,n_discrete_cols:])
    
            train_df_standard = train_df.copy()
            train_df_standard.iloc[:,n_discrete_cols:] = standardizer.transform(train_df_standard.iloc[:,n_discrete_cols:])
            # Test data will also be standardized but using mean and std from training data
            test_df_standard = test_df.copy()
            test_df_standard.iloc[:,n_discrete_cols:] = standardizer.transform(test_df_standard.iloc[:,n_discrete_cols:])
            
            # Get the training data