Skip to content
Snippets Groups Projects
MachineLearning.py 121 KiB
Newer Older
glia's avatar
glia committed
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022

@author: Qianliang Li (glia@dtu.dk)

This script contains the code for the machine learning analysis

It should be run after Preprocessing.py and FeatureEstimation.py
"""

# Set working directory
import os
wkdir = "/home/glia/EEG/Final_scripts/"
os.chdir(wkdir)

# Load all libraries from the Preamble
from Preamble import *

# Load the questionnaire data
final_qdf = pd.read_csv("final_qdf.csv", sep=",", na_values=' ')

# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
n_groups = 2
Groups = ["CTRL", "PTSD"]

# Make function to load EEG features
def load_features_df():
    # Load all features
    power_df = pd.read_pickle(Feature_savepath+"Power_df.pkl")
    fTBR_data_df = pd.read_pickle(Feature_savepath+"fTBR_df.pkl")
    asymmetry_df = pd.read_pickle(Feature_savepath+"asymmetry_df.pkl")
    PAF_data_df = pd.read_pickle(Feature_savepath+"PAF_data_FOOOF_df.pkl")
    PAF_data_df_global = pd.read_pickle(Feature_savepath+"PAF_data_FOOOF_global_df.pkl")
    OOF_data_df = pd.read_pickle(Feature_savepath+"OOF_data_FOOOF_df.pkl")
    con_data_df = pd.read_pickle(Feature_savepath+"con_data_source_drop_interpol_df.pkl")
    pec_data_df = pd.read_pickle(Feature_savepath+"pec_data_drop_interpol_ch_df.pkl")
    microstate_transition_data_df = pd.read_pickle(Feature_savepath+"microstate_transition_data_df.pkl")
    microstate_time_df = pd.read_pickle(Feature_savepath+"microstate_time_df.pkl")
    microstate_entropy_df = pd.read_pickle(Feature_savepath+"microstate_entropy_df.pkl")
    GC_data_df = pd.read_pickle(Feature_savepath+"GC_data_source_drop_interpol_df.pkl")
    H_data_df = pd.read_pickle(Feature_savepath+"H_data_df.pkl")
    H_data_df_global = pd.read_pickle(Feature_savepath+"H_data_global_df.pkl")
    
    # List of features
    EEG_features_name_list = [['Power'],
                              ['Frontal Theta Beta Ratio',
                              'Asymmetry'],
                              ['Peak Alpha Frequency',
                              'Global Peak Alpha Frequency'],
                              ["1/f exponent"],
                              ['imcoh'],
                              ['wpli'],
                              ['Power Envelope Correlation'],
                              ['Microstate Transition',
                              'Microstate Ratio Time',
                              'Microstate Entropy'],
                              ["Granger Causality"],
                              ['DFA Exponent',
                              'Global DFA Exponent']]
    
    # Arrange them to fit one 2D dataframe
    # Make function to add measurement column for indexing
    def add_measurement_column(df, measurement = "Text"):
        dummy_variable = [measurement]*df.shape[0]
        df.insert(1, "Measurement", dummy_variable)
        return df
    # Make function to convert column tuple to string
    def convertTupleHeader(header):
        header = list(header)
        str = "_".join(header)
        return str
    
    # Prepare overall dataframe
    EEG_features_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
    
    # Add power spectral densities
    power_df = add_measurement_column(power_df, "Power")
    temp_df = power_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Quant_status", "Eye_status",

                                        "Freq_band", "Channel"], dropna=False,
                                   values="PSD").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add frontal theta/beta ratio
    # fTBR_data_df = add_measurement_column(fTBR_data_df, "Frontal Theta Beta Ratio")
    temp_df = fTBR_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status"], dropna=False,
                                       values="TBR").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add power asymmetry
    asymmetry_df = add_measurement_column(asymmetry_df, "Asymmetry")
    temp_df = asymmetry_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "Freq_band", "ROI"], dropna=False,
                                        values="Asymmetry_score").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add peak alpha frequency
    PAF_data_df = add_measurement_column(PAF_data_df, "Peak Alpha Frequency")
    temp_df = PAF_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "Channel"], dropna=False,
                                        values="Value").reset_index(drop=True)
    # NaN values are interpolated with means across channels for each condition
    eye_status = list(final_epochs[0].event_id.keys())
    for ee in eye_status:
        temp = temp_df.loc[:,("Peak Alpha Frequency",ee)] # get data
        temp = temp.T.fillna(temp.mean(axis=1)).T # fill (transpose used because fillna is axis=0)
        temp_df.loc[:,("Peak Alpha Frequency",ee)] = temp.to_numpy()
    # If there are still NaN the values are interpolated across channels and condition
    temp_df = temp_df.T.fillna(temp_df.mean(axis=1)).T
    
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add 1/f exponent
    OOF_data_df = add_measurement_column(OOF_data_df, "1/f exponent")
    temp_df = OOF_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "Channel"], dropna=False,
                                        values="Value").reset_index(drop=True)
    # NaN values are interpolated with means across channels for each condition
    eye_status = list(final_epochs[0].event_id.keys())
    for ee in eye_status:
        temp = temp_df.loc[:,("1/f exponent",ee)] # get data
        temp = temp.T.fillna(temp.mean(axis=1)).T # fill (transpose used because fillna is axis=0)
        temp_df.loc[:,("1/f exponent",ee)] = temp.to_numpy()
    # If there are still NaN the values are interpolated across channels and condition
    temp_df = temp_df.T.fillna(temp_df.mean(axis=1)).T
    
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add global peak alpha frequency
    #PAF_data_df_global = add_measurement_column(PAF_data_df_global, "Global_Peak_Alpha_Frequency") # already exists
    temp_df = PAF_data_df_global.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status"], dropna=False,
                                        values="Value").reset_index(drop=True)
    # NaN values are interpolated across eye condition
    temp_df = temp_df.T.fillna(temp_df.mean(axis=1)).T
    
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add connectivity measurements
    #con_data_df = add_measurement_column(con_data_df, "Connectivity") # already exists
    temp_df = con_data_df.pivot_table(index="Subject_ID",columns=["Con_measurement",
                                        "Eye_status", "chx", "chy", "Freq_band"], dropna=True,
                                        values="Value").reset_index(drop=True)
    # Drop coh and plv, which are more susceptible to volume conduction
    temp_df = temp_df.drop("coh",axis=1)
    temp_df = temp_df.drop("plv",axis=1)
    
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add orthogonalized power enveloped correlations
    pec_data_df = add_measurement_column(pec_data_df, "Power Envelope Correlation")
    temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "chx", "chy", "Freq_band"], dropna=True,
                                        values="Value").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add microstate transition probabilities
    microstate_transition_data_df = add_measurement_column(microstate_transition_data_df, "Microstate Transition")
    temp_df = microstate_transition_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "Transition"], dropna=False,
                                        values="Value").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add microstate time covered
    microstate_time_df = add_measurement_column(microstate_time_df, "Microstate Ratio Time")
    # Convert microstate to str before using it as column
    microstate_time_df = microstate_time_df.astype({"Microstate": str})
    
    temp_df = microstate_time_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "Microstate"], dropna=False,
                                        values="Value").reset_index(drop=True)
    temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
    
    EEG_features_df = pd.concat([EEG_features_df,temp_df], axis=1)
    
    # Add microstate entropy
    #microstate_entropy_df = add_measurement_column(microstate_entropy_df, "Microstate_Entropy") # already exists
glia's avatar
glia committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
Loading
Loading full blame…