Skip to content
Snippets Groups Projects
FeatureEstimation.py 125 KiB
Newer Older
glia's avatar
glia committed
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022

@author: Qianliang Li (glia@dtu.dk)

This script contains the code to estimate the following EEG features:
    1. Power Spectral Density
    2. Frontal Theta/Beta Ratio
    3. Asymmetry
    4. Peak Alpha Frequency
    5. 1/f Exponents
    6. Microstates
    7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
    8. Imaginary part of Coherence
    9. Weighted Phase Lag Index
    10. (Orthogonalized) Power Envelope Correlations
    11. Granger Causality

It should be run after Preprocessing.py

All features are saved in pandas DataFrame format for the machine learning
pipeline

Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc

The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""

# Set working directory
import os
wkdir = "/home/glia/EEG"
os.chdir(wkdir)

# Load all libraries from the Preamble
from Preamble import *

# %% Load preprocessed epochs and questionnaire data
load_path = "./PreprocessedData"

# Get filenames
files = []
for r, d, f in os.walk(load_path):
    for file in f:
        if ".fif" in file:
            files.append(os.path.join(r, file))
files.sort()

# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
    temp = files[i].split("\\")
    temp = temp[-1].split("_")
    Subject_id[i] = int(temp[0])

n_subjects = len(Subject_id)

# Load Final epochs
final_epochs = [0]*n_subjects
for n in range(n_subjects):
    final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
                    verbose=0)

# Load dropped epochs - used for gap idx in microstates
bad_subjects = [12345] # list with subjects that were excluded due to too many dropped epochs/chs
Drop_epochs_df = pd.read_pickle("./Preprocessing/dropped_epochs.pkl")

good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)

### Load questionnaire data
# For the purposes of this demonstration I will make a dummy dataframe
# The original code imported csv files with questionnaire data and group status
final_qdf = pd.DataFrame({"Subject_ID":Subject_id,
                          "Age":[23,26],
                          "Gender":[0,0],
                          "Group_status":[0,1],
                          "PCL_total":[33,56],
                          "Q1":[1.2, 2.3],
                          "Q2":[1.7, 1.5],
                          "Qn":[2.1,1.0]})

# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
n_groups = 2
Groups = ["CTRL", "PTSD"]

# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"

# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]

# Pre-allocate memory
power_bands = [0]*len(final_epochs)

def power_band_estimation(n):
    # Get index for eyes open and eyes closed
    EC_index = final_epochs[n].events[:,2] == 1
    EO_index = final_epochs[n].events[:,2] == 2
    
    # Calculate the power spectral density
    psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    
    temp_power_band = []
    
    for fmin, fmax in Freq_Bands.values():
        # Calculate the power each frequency band
        psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
        # Calculate the mean for each eye status
        psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
                                      psds_band[EO_index,:].mean(axis=0)])
        # Append for each freq band
        temp_power_band.append(psds_band_eye)
        # Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
    
    # The list is reshaped and absolute and relative power are calculated
    abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
    
    rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
    # each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
    
    # Make one list in 1 dimension
    abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
    rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
    ## Output: First the channels, then the eye status and finally the frequency bands are concatenated
    ## E.g. element 26 is 3rd channel, eyes open, first frequency band
    #assert abs_power_values[26] == abs_power_band[0,1,2]
    #assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
    #assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
    
    # Get result
    res = np.concatenate([abs_power_values,rel_power_values],axis=0)
    return n, res

with concurrent.futures.ProcessPoolExecutor() as executor:
    for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
        power_bands[n] = result

# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]

Brain_region_labels = ["Frontal","Central","Posterior"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]

# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]

Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)

# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)

# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
glia's avatar
glia committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
                                "Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
                                "Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
                                "PSD": list(np.concatenate(power_bands, axis=0))
                                })
# Absolute power is in decibels (10*log10(power))

# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
            cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
            cat.reorder_categories(Brain_region_labels, ordered=True)

# Save the dataframe
power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))


# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))

eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)

# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
                         (power_df["Brain_region"] == "Frontal")]

# Calculate average frontal power
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()

# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)

# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta

# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]

# Take the natural log of ratio 
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])

# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )

frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))

# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
                             len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))

def calculate_asymmetry(i):
    ii = np.unique(power_df["Subject_ID"])[i]
    temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))
    for e in range(len(np.unique(power_df["Eye_status"]))):
        ee = np.unique(power_df["Eye_status"])[e]
        for f in range(len(list(Freq_Bands.keys()))):
            ff = list(Freq_Bands.keys())[f]
            
            # Get the specific part of the df
            temp_power_df = power_df[(power_df["Quant_status"] == qq) &
                                     (power_df["Eye_status"] == ee) &
                                     (power_df["Subject_ID"] == ii) &
                                     (power_df["Freq_band"] == ff)].copy()
            
            # Convert from dB to raw power
            temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
            
            # Calculate the power asymmetry
            for r in range(len(ROI)):
                rr = ROI[r]
                temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
                                                  ~(temp_power_df["Brain_side"] == "Mid")]
                # Sort using channel names to make sure F8-F7 and not F4-F7 etc.
                temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
                # Get the log power
                R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
                ln_R_power = np.log(R_power) # get log power
                L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
                ln_L_power = np.log(L_power) # get log power
                # Pairwise subtraction followed by averaging
                asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
                # Save it to the array
                temp_asymmetry[e,f,r] = asymmetry_value
    # Print progress
    print("{} out of {} finished testing".format(i+1,n_subjects))
    return i, temp_asymmetry

with concurrent.futures.ProcessPoolExecutor() as executor:
    for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
        asymmetry[i,:,:,:] = res

# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)

# ROIs
n_ROI = len(ROI)

# Make the dataframe                
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
                                     "Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
                                     "ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
                                     "Asymmetry_score": asymmetry.flatten(order="C")
                                     })
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc

# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]

i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]

assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]

# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))

# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)

# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter

eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent

def FOOOF_estimation(i):
    PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
    OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
    # Get Eye status
    eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
    # Calculate the power spectral density
    psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    # Retrieve psds for the 2 conditions and calculate mean across epochs
    psds = []
    for e in range(n_eye_status):
        # Get the epochs for specific eye condition
        temp_psd = psd[eye_idx[e],:,:]
        # Calculate the mean across epochs
        temp_psd = np.mean(temp_psd, axis=0)
        # Save
        psds.append(temp_psd)
    # Try multiple start freq
    PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
    OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
    r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
    for e in range(n_eye_status):
        psds_avg = psds[e]
        for f in range(len(freq_start_it_range)):
            # Initiate FOOOF group for analysis of multiple PSD
            fg = fooof.FOOOFGroup()
            # Set the frequency range to fit the model
            freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
            # Fit to each source PSD separately, but in parallel
            fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
            # Extract aperiodic parameters
            aps = fg.get_params('aperiodic_params')
            # Extract peak parameters
            peaks = fg.get_params('peak_params')
            # Extract goodness-of-fit metrics
            r2s = fg.get_params('r_squared')
            # Save OOF and r2s
            OOF_data00[e,:,f] = aps
            r2s00[e,:,f] = r2s
            # Find the alpha peak with greatest power
            for c in range(n_channels):
                peaks0 = peaks[peaks[:,3] == c]
                # Subset the peaks within the alpha band
                in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
                if sum(in_alpha_band) > 0: # Any alpha peaks?
                    # Choose the peak with the highest power
                    max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
                    # Save results
                    PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
                else:
                    # No alpha peaks
                    PAF_data00[e,c,f] = [np.nan]*3
    # Check criterias
    good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
    good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
    # Save the data or NaN if criterias were not fulfilled
    for e in range(n_eye_status):
        for c in range(n_channels):
            if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
                OOF_data0[e,c] = [np.nan]*2
            else: # Save OOF associated with greatest r^2 that fulfilled criterias
                OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
            if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
                PAF_data0[e,c] = [np.nan]*3
            else: # Save PAF associated with greatest r^2 that fulfilled criterias
                PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
    print("Finished {} out of {} subjects".format(i+1,n_subjects))
    return i, PAF_data0, OOF_data0

# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

with concurrent.futures.ProcessPoolExecutor() as executor:
    for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
        PAF_data[i] = PAF_result
        OOF_data[i] = OOF_result

# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
    pickle.dump(PAF_data, file)
with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
    pickle.dump(OOF_data, file)

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values

index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
    col_name = PAF_data_df.columns[col]
    for shape in range(ori.shape[col]):
        temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
PAF_data_df = temp_df # replace original df 

# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)

# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
PAF_data_df_global.insert(3, "Measurement", dummy_variable )

# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]

Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = "Frontal"
Brain_region[np.array([i in Central_chs for i in ch_names])] = "Central"
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = "Posterior"

PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))

# Save the dataframes
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))

# Convert to Pandas dataframe (only keep exponent parameter for OOF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = OOF_data[:,:,:,1]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values

index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
    col_name = PAF_data_df.columns[col]
    for shape in range(ori.shape[col]):
        temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
OOF_data_df = temp_df # replace original df 

# Add group status
Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
OOF_data_df.insert(3, "Group_status", Group_status)

# Regional OOF
OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))

# Save the dataframes
OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))

# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
    locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]

# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
    # Transform data to correct shape
    micro_data.append(final_epochs[i].get_data()) # get data
    arr_shape = micro_data[i].shape # get shape
    micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
    micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
    # Get indices for eyes open and closed
    EC_index = final_epochs[i].events[:,2] == 1
    EO_index = final_epochs[i].events[:,2] == 2
    # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
    EC_index = np.repeat(EC_index,4*sfreq)
    EO_index = np.repeat(EO_index,4*sfreq)
    # Save data where it is divided into eye status
    EC_micro_data.append(micro_data[i][EC_index])
    EO_micro_data.append(micro_data[i][EO_index])

# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)

# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
    maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
    global_gev.append(np.sum(gev))
    cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)

#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]

# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# we used 4 microstates

# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
n_maps = 4
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]

# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []

# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

for r in range(n_run):
    maps = [0]*2
    m_labels = [0]*2
    gfp_peaks = [0]*2
    gev = [0]*2
    # Eyes closed
    counter = 0
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(np.array(EC_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    # Eyes open
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(np.array(EO_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    
    microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
    print("Finished {} out of {}".format(r+1, n_run))

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Save the results
with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "wb") as file:
    pickle.dump(microstate_cluster_results, file)

# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
#     microstate_cluster_results = pickle.load(file)

# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]

# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"]
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")

# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2] # EC
order[1] = [3,1,0,2] # EO
for i in range(len(order)):
    maps[i] = maps[i][order[i],:] # re-order maps
    gev[i] = gev[i][order[i]] # re-order GEV
    # Make directory to find and replace map labels
    dic0 = {value:key for key, value in enumerate(order[i])}
    m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels

# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1],[1,1,1,-1]]
for i in range(len(order)):
    for m in range(n_maps):
        maps[i][m] *= sign_swap[i][m]

# Plot the maps and save
save_path = "/home/glia/Analysis/Figures/Microstates/"
labels = ["EC", "EO"]
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
    # Save the figure
    fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))

# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
    n_t = data.shape[0]
    n_ch = data.shape[1]
    data = data - data.mean(axis=1, keepdims=True)

    # GFP peaks
    gfp = np.std(data, axis=1)
    gfp_peaks = locmax(gfp)
    gfp_values = gfp[gfp_peaks]
    gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
    n_gfp = gfp_peaks.shape[0]

    # Spatial correlation
    C = np.dot(data, maps.T)
    C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
    L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
    
    return C

C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]

# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
    for Lmap in range(n_maps):
        for Mmap in range(n_maps):
            sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
            axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number", labelpad=10)
    fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))

# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
    for imap in range(n_maps):
        sns.distplot(C[i][:,imap], ax = axarr[imap])
        plt.xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number")

# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data

# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]

micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
    # Get indices for subject
    micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
    temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
    # Get labels for subject i EO
    micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
    temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
    # Save
    micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
    
    # Get indices with gaps
    # Dropped epochs are first considered
    # Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
    # Get epochs for each condition
    EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
    EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
                                            (Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
    # Get indices for the epochs for EC that were dropped and correct for changing index due to drop
    EC_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EC_drop_epochs)):
        drop_epoch_number = EC_drop_epochs[d]
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
    if len(EC_drop_epochs_gaps_idx) > 0:
        for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EC_drop_epochs_gaps_idx[0] == -1:
                EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
    
    # Get indices for the epochs for EO that were dropped and correct for changing index due to drop
    EO_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EO_drop_epochs)):
        drop_epoch_number = EO_drop_epochs[d]-75
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
    if len(EO_drop_epochs_gaps_idx) > 0:
        for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EO_drop_epochs_gaps_idx[0] == -1:
                EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
    
    # Gaps between trials
    Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
    EC_trial_gaps_idx = []
    EO_trial_gaps_idx = []
    counter_EC = 0
    counter_EO = 0
    for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
        temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
                            (EC_drop_epochs < Trial_indices[t+1])]
        # Correct the trial id for any potential drops within that trial
        counter_EC += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
        EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
        
        temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
                            (EO_drop_epochs < Trial_indices[t+1]+75)]
        # Correct the trial id for any potential drops within that trial
        counter_EO += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
        EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
    
    # Concatenate all drop indices
    gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
                    np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
    # Make on with trial gaps only for use in LRTC analysis
    gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])

# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))

# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO

microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
for i in range(n_subjects):
    # Calculate ratio of time covered
    temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
    temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
    # Calculate transition matrix
    temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
    temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
    # Calculate Shannon entropy
    temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
    temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
    
    # Save the data
    microstate_time_data[i,0,:] = temp_EC_p_hat
    microstate_time_data[i,1,:] = temp_EO_p_hat
    microstate_transition_data[i,0,:,:] = temp_EC_T_hat
    microstate_transition_data[i,1,:,:] = temp_EO_T_hat
    microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
    microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy

# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
     microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 4 x 4 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4",
                   "M2->M1", "M2->M2", "M2->M3", "M2->M4",
                   "M3->M1", "M3->M2", "M3->M3", "M3->M4",
                   "M4->M1", "M4->M2", "M4->M3", "M4->M4"]

arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
    col_name = microstate_transition_data_df.columns[col]
    for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)

# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))

# Convert time covered data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4]

index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
    col_name = microstate_time_df.columns[col]
    for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)

# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))

# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2

microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)

# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
    col_name = microstate_entropy_df.columns[col]
    for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)

# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))

# %% Long-range temporal correlations (LRTC)
"""
See Hardstone et al, 2012
Hurst exponent estimation steps:
    1. Preprocess
    2. Band-pass filter for frequency band of interest
    3. Hilbert transform to obtain amplitude envelope
    4. Perform DFA
        4.1 Compute cumulative sum of time series to create signal profile
        4.2 Define set of window sizes (see below)
        4.3 Remove the linear trend using least-squares for each window
        4.4 Calculate standard deviation for each window and take the mean
        4.5 Plot fluctuation function (Standard deviation) as function
            for all window sizes, on double logarithmic scale
        4.6 The DFA exponent alpha correspond to Hurst exponent
            f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)

If 0 < alpha < 0.5: The process exhibits anti-correlations
If 0.5 < alpha < 1: The process exhibits positive correlations
If alpha = 0.5: The process is indistinguishable from a random process
If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1

Window sizes should be equally spaced on a logarithmic scale
Sizes should be at least 4 samples and up to 10% of total signal length
Filters can influence neighboring samples, thus filters should be tested
on white noise to estimate window sizes that are unaffected by filters

filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth

"""
# From simulations with white noise I determined window size thresholds for the 5 frequency bands:
thresholds = [7,7,7,6.5,6.5]
# And their corresponding log step sizes
with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
    log_win_sizes = pickle.load(filehandle)

# Variables for the the different conditions
# Sampling frequency
sfreq = final_epochs[0].info["sfreq"]
# Channels
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
# Frequency
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# Eye status
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

### Estimating Hurst exponent for the data
# The data should be re-referenced to common average (Already done)

# Data are transformed to numpy arrays
# Then divided into EO and EC and further into each of the 5 trials
# So DFA is estimated for each trial separately, which was concluded from simulations
gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
n_trials = 5

H_data = []
for i in range(n_subjects):
    # Transform data to correct shape
    temp_arr = final_epochs[i].get_data() # get data
    arr_shape = temp_arr.shape # get shape
    temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
    temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
    # Get indices for eyes open and closed
    EC_index = final_epochs[i].events[:,2] == 1
    EO_index = final_epochs[i].events[:,2] == 2
    # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
    EC_index = np.repeat(EC_index,4*sfreq)
    EO_index = np.repeat(EO_index,4*sfreq)
    # Divide into eye status
    EC_data = temp_arr[EC_index]
    EO_data = temp_arr[EO_index]
    # Divide into trials
    EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
    EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
    
    EC_trial_data = []
    EO_trial_data = []
    for t in range(n_trials):
        EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
        EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
        
    # Save data
    H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]

# Calculate H for each subject, eye status, trial, freq and channel
H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
w_len = [len(ele) for ele in log_win_sizes]
DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
DFA_arr[:] = np.nan

# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started",c_time1)

# Nolds are already using all cores so multiprocessing with make it slower
# Warning occurs when R2 is estimated during detrending - but R2 is not used
warnings.simplefilter("ignore")
for i in range(n_subjects):
    # Pre-allocate memory
    DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
    DFA_temp[:] = np.nan
    H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
    for e in range(n_eye_status):
        for trial in range(n_trials):
            for c in range(n_channels):
                # Get the data
                signal = H_data[i][e][trial][:,c]
                
                counter = 0 # prepare counter
                for fmin, fmax in Freq_Bands.values():
                    # Filter for each freq band
                    signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
                                                  l_freq=fmin, h_freq=fmax)
                    # Hilbert transform
                    analytic_signal = scipy.signal.hilbert(signal_filtered)
                    # Get Amplitude envelope
                    # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
                    ampltude_envelope = np.abs(analytic_signal)
                    # Perform DFA using predefined window sizes from simulation
                    a, dfa_data = nolds.dfa(ampltude_envelope,
                                            nvals=np.exp(log_win_sizes[counter]).astype("int"),
                                            debug_data=True)
                    # Save DFA results
                    DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
                    H_temp[e,trial,c,counter] = a
                    # Update counter
                    counter += 1

    # Print run status
    print("Finished {} out of {}".format(i+1,n_subjects))
    # Save the results
    H_arr[i] = H_temp
    DFA_arr[i] = DFA_temp

warnings.simplefilter("default")

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nCurrent Time",c_time2)

# Save the DFA analysis data 
np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
np.save(Feature_savepath+"H_arr.npy", H_arr)

# Load
DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
H_arr = np.load(Feature_savepath+"H_arr.npy")

# Average the Hurst Exponent across trials
H_arr = np.mean(H_arr, axis=2)

# Convert to Pandas dataframe (Hurst exponent)
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
ch_name = final_epochs[0].info["ch_names"]

index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
for col in range(len(index_values)):
    col_name = H_data_df.columns[col]
    for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
        H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]

# Add group status
Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
H_data_df.insert(2, "Group_status", Group_status)

# Fix Freq_band categorical order
H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
            cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)

# Global Hurst exponent
H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# Add group status (cannot use group_by as each subject only have 1 group, not both)
Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# Add to dataframe
H_data_df_global.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
H_data_df_global.insert(3, "Measurement", dummy_variable )

# Save the data
H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))

# %% Source localization of sensor data
# Using non-interpolated channels
# Even interpolated channels during preprocessing and visual inspection
# are dropped

# Prepare epochs for estimation of source connectivity
source_epochs = [0]*n_subjects
for i in range(n_subjects):
    source_epochs[i] = final_epochs[i].copy()

### Make forward solutions
# A forward solution is first made for all individuals with no dropped channels
# Afterwards individual forward solutions are made for subjects with bad
# channels that were interpolated in preprocessing and these are dropped
# First forward operator is computed using a template MRI for each dataset
fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
subjects_dir = os.path.dirname(fs_dir)
trans = "fsaverage"
src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")

# Read the template sourcespace
sourcespace = mne.read_source_spaces(src)

temp_idx = 0 # Index with subject that had no bad channels
subject_eeg = source_epochs[temp_idx].copy()
subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# Make forward solution
fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
                            bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# Save forward operator
fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
mne.write_forward_solution(fname_fwd, fwd, overwrite=True)

# A specific forward solution is also made for each subject with bad channels
with open("./Preprocessing/bad_ch.pkl", "rb") as file:
   bad_ch = pickle.load(file)

All_bad_ch = bad_ch
All_drop_epochs = dropped_epochs_df
All_dropped_ch = []

Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# For each subject with bad channels, drop the channels and make forward operator
for n in range(len(Bad_ch_subjects)):
    Subject = Bad_ch_subjects.iloc[n]
    try:
        Subject_idx = Subject_id.index(Subject)
        # Get unique bad channels
        Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
        Bad_ch1 = []
        for i2 in range(len(Bad_ch0)):
            if type(Bad_ch0[i2]) == list:
                for i3 in range(len(Bad_ch0[i2])):
                    Bad_ch1.append(Bad_ch0[i2][i3])
            elif type(Bad_ch0[i2]) == str:
                Bad_ch1.append(Bad_ch0[i2])
        Bad_ch1 = np.unique(Bad_ch1)
        # Drop the bad channels
        source_epochs[Subject_idx].drop_channels(Bad_ch1)
        # Save the overview of dropped channels
        All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
        # Make forward operator
        subject_eeg = source_epochs[Subject_idx].copy()
        subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
        # Make forward solution
        fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
                                    bem=bem, eeg=True, mindist=5.0, n_jobs=1)
        # Save forward operator
        fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
        mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
    except:
        print(Subject,"was already dropped")

with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
    pickle.dump(All_dropped_ch, filehandle)


# %% Load forward operators
# Re-use for all subjects without dropped channels
fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
fwd = mne.read_forward_solution(fname_fwd)

fwd_list = [fwd]*n_subjects

# Use specific forward solutions for subjects with dropped channels
with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
   All_dropped_ch = pickle.load(file)

for i in range(len(All_dropped_ch)):
    Subject = All_dropped_ch[i][0]
    Subject_idx = All_dropped_ch[i][1]
    fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
    fwd = mne.read_forward_solution(fname_fwd)
    fwd_list[Subject_idx] = fwd

# Check the correct number of channels are present in fwd
random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]

# %% Make parcellation
# After mapping to source space, I end up with 20484 vertices
# but I wanted to map to fewer sources and not many more
# Thus I need to perform parcellation
# Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
                                    subjects_dir=subjects_dir)
labels_aparc = labels_aparc[:-2] # remove unknowns

labels_aparc_names = [label.name for label in labels_aparc]

# Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# Making fuction to take subset of a label
def label_subset(label, subset, name="ROI_name"):
    label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
                         label.values[subset], label.hemi,
                         name = "{}-{}".format(name,label.hemi),
                         subject = label.subject, color = None)
    return label_subset

### Visual area 1 (V1 and somatosensory cortex BA1-3)
label_filenames = ["lh.V1.label", "rh.V1.label",
                   "lh.BA1.label", "rh.BA1.label",
                   "lh.BA2.label", "rh.BA2.label",
                   "lh.BA3a.label", "rh.BA3a.label",
                   "lh.BA3b.label", "rh.BA3b.label"]
labels0 = [0]*len(label_filenames)
for i, filename in enumerate(label_filenames):
    labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# Add V1 to final label variable
labels = labels0[:2]
# Rename to remove redundant hemi information
labels[0].name = "V1-{}".format(labels[0].hemi)
labels[1].name = "V1-{}".format(labels[1].hemi)
# Assign a color
labels[0].color = matplotlib.colors.to_rgba("salmon")
labels[1].color = matplotlib.colors.to_rgba("salmon")
# Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
SMC_labels = labels0[2:]
for hem in range(2):
    SMC_p1 = SMC_labels[hem]
    for i in range(1,len(SMC_labels)//2):
        SMC_p2 = SMC_labels[hem+2*i]
        p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
        SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
        SMC_p1 = SMC_p1.__add__(SMC_p21)
    SMC_p1.name = SMC_p21.name
    # Assign a color
    SMC_p1.color = matplotlib.colors.to_rgba("orange")
    labels.append(SMC_p1)

### Inferior frontal junction
# Located at junction between inferior frontal and inferior precentral sulcus
label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

pos1 = temp_labels[0].pos
pos2 = temp_labels[2].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI

IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# Combine the 2 parts
IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
IFJ_label.name = IFJ_label_p1.name
# Assign a color
IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# Append to final list
labels.append(IFJ_label)

# Do the same for the right hemisphere
pos1 = temp_labels[1].pos
pos2 = temp_labels[3].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# Combine the 2 parts
IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
IFJ_label.name = IFJ_label_p1.name
# Assign a color
IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# Append to final list
labels.append(IFJ_label)

### Intraparietal sulcus
label_aparc_names0 = ["S_intrapariet_and_P_trans"]
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
for i in range(len(labels_aparc_idx)):
    labels.append(labels_aparc[labels_aparc_idx[i]].copy())
    labels[-1].name = "IPS-{}".format(labels[-1].hemi)

### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
label_aparc_names0 = ["G_front_middle","G_precentral"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
temp_label0 = temp_labels[0]
G_fm_y = temp_label0.pos[:,1]
thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# Take 10% closest for precentral gyrus (most anterior)
temp_label0 = temp_labels[2]
# I cannot only use y (anterior/posterior) but also need to restrict z-position
G_pre_cen_z = temp_label0.pos[:,2]
thres_G_pre_cen_z = 0.04 # visually inspected threshold
G_pre_cen_y = temp_label0.pos[:,1]
thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# Combine the 2 parts
FEF_label = FEF_label_p1.__add__(FEF_label_p2)
FEF_label.name = FEF_label_p1.name
# Assign a color
FEF_label.color = matplotlib.colors.to_rgba("aqua")
# Append to final list
labels.append(FEF_label)

# Do the same for the right hemisphere
temp_label0 = temp_labels[1]
G_fm_y = temp_label0.pos[:,1]
thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")

temp_label0 = temp_labels[3]
G_pre_cen_z = temp_label0.pos[:,2]
thres_G_pre_cen_z = 0.04 # visually inspected threshold
G_pre_cen_y = temp_label0.pos[:,1]
thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# Combine the 2 parts
FEF_label = FEF_label_p1.__add__(FEF_label_p2)
FEF_label.name = FEF_label_p1.name
# Assign a color
FEF_label.color = matplotlib.colors.to_rgba("aqua")
# Append to final list
labels.append(FEF_label)

### Supplementary eye fields
# Located at caudal end of frontal gyrus and upper part of paracentral sulcus
label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

pos1 = temp_labels[0].pos
pos2 = temp_labels[2].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# Notice that superior frontal gyrus is around 4 times bigger than paracentral
len(l1_idx)/pos1.shape[0]
len(l2_idx)/pos2.shape[0]
# Only use upper part
z_threshold = 0.06 # visually inspected
l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# Combine the 2 parts
SEF_label = SEF_label_p1.__add__(SEF_label_p2)
SEF_label.name = SEF_label_p1.name
# Assign a color
SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# Append to final list
labels.append(SEF_label)

# Do the same for the right hemisphere
pos1 = temp_labels[1].pos
pos2 = temp_labels[3].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# Notice that superior frontal gyrus is around 4 times bigger than paracentral
len(l1_idx)/pos1.shape[0]
len(l2_idx)/pos2.shape[0]
# Only use upper part
z_threshold = 0.06 # visually inspected
l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# Combine the 2 parts
SEF_label = SEF_label_p1.__add__(SEF_label_p2)
SEF_label.name = SEF_label_p1.name
# Assign a color
SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# Append to final list
labels.append(SEF_label)

### Posterior cingulate cortex
label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
labels0 = []
for hem in range(2):
    PCC_p1 = temp_labels[hem]
    for i in range(1,len(temp_labels)//2):
        PCC_p2 = temp_labels[hem+2*i]
        PCC_p1 = PCC_p1.__add__(PCC_p2)
    PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
    labels0.append(PCC_p1)
# Combine the 2 hemisphere in 1 label
labels.append(labels0[0].__add__(labels0[1]))

### Medial prefrontal cortex
# From their schematic it looks like rostral 1/4 of superior frontal gyrus
label_aparc_names0 = ["G_front_sup"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
        temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
        temp_labels.append(temp_labels0)
# Combine the 2 hemisphere in 1 label
labels.append(temp_labels[0].__add__(temp_labels[1]))

### Angular gyrus
label_aparc_names0 = ["G_pariet_inf-Angular"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels.name = "ANG-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

### Posterior middle frontal gyrus
label_aparc_names0 = ["G_front_middle"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
        temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

### Inferior parietal lobule
# From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# Split angular in 2 and get rostral part
temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# Split supramarginal in 2 and get posterior part
temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]

for hem in range(2):
    PCC_p1 = temp_labels[hem]
    for i in range(1,len(temp_labels)//2):
        PCC_p2 = temp_labels[hem+2*i]
        PCC_p1 = PCC_p1.__add__(PCC_p2)
    PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
    labels.append(PCC_p1)

### Orbital gyrus
# From their figure it seems to correspond to orbital part of inferior frontal gyrus
label_aparc_names0 = ["G_front_inf-Orbital"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels.name = "ORB-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

### Middle temporal gyrus
# From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
label_aparc_names0 = ["G_temporal_middle"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
        temp_labels.name = "MTG-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

### Anterior middle frontal gyrus
label_aparc_names0 = ["G_front_middle"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
        temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

### Insula
label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
for hem in range(2):
    PCC_p1 = temp_labels[hem]
    for i in range(1,len(temp_labels)//2):
        PCC_p2 = temp_labels[hem+2*i]
        PCC_p1 = PCC_p1.__add__(PCC_p2)
    PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
    labels.append(PCC_p1)

### (Dorsal) Anterior Cingulate Cortex
label_aparc_names0 = ["G_and_S_cingul-Ant"]
temp_labels = []
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
        temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# Combine the 2 hemisphere in 1 label
labels.append(temp_labels[0].__add__(temp_labels[1]))

### Supramarginal Gyrus
label_aparc_names0 = ["G_pariet_inf-Supramar"]
for i in range(len(label_aparc_names0)):
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    for i2 in range(len(labels_aparc_idx)):
        temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
        temp_labels.name = "SUP-{}".format(temp_labels.hemi)
        labels.append(temp_labels)

print("{} ROIs have been defined".format(len(labels)))

# # Visualize positions
# fig = plt.figure()
# ax = fig.add_subplot(111, projection="3d")
# for i in range(0,3):
#     temp_pos = temp_labels[i].pos
#     ax.scatter(temp_pos[:,0],temp_pos[:,1],temp_pos[:,2], marker="o", alpha=0.1)
# # Add to plot
# ax.scatter(labels[-1].pos[:,0],labels[-1].pos[:,1],labels[-1].pos[:,2], marker="o")

# # Visualize the labels
# # temp_l = labels_aparc[labels_aparc_idx[0]]
# temp_l = labels[-2]
# l_stc = stc[100].in_label(temp_l)
# l_stc.vertices

# l_stc.plot(**surfer_kwargs)

# Save the annotation file
with open("custom_aparc2009_Li_et_al_2022.pkl", "wb") as file:
    pickle.dump(labels, file)

# %% Calculate orthogonalized power envelope connectivity in source space
# In non-interpolated channels
# Updated 22/1 - 2021 to use delta = 1/81 and assumption
# about non-correlated and equal variance noise covariance matrix for channels

# Load
with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
    labels = pickle.load(file)
label_names = [label.name for label in labels]

# Define function to estimate PEC
def PEC_estimation(x, freq_bands, sfreq=200):
    """
    This function takes a source timeseries signal x and performs:
        1. Bandpass filtering
        2. Hilbert transform to yield analytical signal
        3. Compute all to all connectivity by iteratively computing for each pair
            a. Orthogonalization
            b. Computing power envelopes by squaring the signals |x|^2
            c. Log-transform to enhance normality
            d. Pearson's correlation between each pair
            e. Fisher's r-to-z transform to enhance normality
    The code has been optimized by inspiration from MNE-Python's function:
    mne.connectivity.enelope_correlation.
    
    In MNE-python version < 0.22 there was a bug, but after the fix in 0.22
    the mne function is equivalent to my implementation, although they don't
    use epsilon but gives same result with a RuntimeWarning about log(0)
    
    IMPORTANT NOTE:
        Filtering introduce artifacts for first and last timepoint
    The values are very low, more than 1e-12 less than the others
    If they are not removed, then they will heavily influence Pearson's
    correlation as it is outlier sensitive
    
    Inputs:
        x - The signal in source space as np.array with shape (ROIs,Timepoints)
        freq_bands - The frequency bands of interest as a dictionary e.g.
                     {"alpha": [8.0, 13.0], "beta": [13.0, 30.0]}
        sfreq - The sampling frequency in Hertz
    
    Output:
        The pairwise connectivity matrix
    """
    n_roi, n_timepoints = x.shape
    n_freq_bands = len(freq_bands)
    
    epsilon = 1e-100 # small value to prevent log(0) errors
    
    # Filter the signal in the different freq bands
    PEC_con0 = np.zeros((n_roi,n_roi,n_freq_bands))
    for fname, frange in freq_bands.items():
        fmin, fmax = [float(interval) for interval in frange]
        signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
                                          fir_design="firwin", verbose=0)
        # Filtering on finite signals will yield very low values for first
        # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
        # Outlier sensitive methods, like Pearson's correlation, is therefore
        # heavily affected and this systematic error is removed by removing
        # the first and last timepoint
        signal_filtered = signal_filtered[:,1:-1]
        
        # Hilbert transform
        analytic_signal = scipy.signal.hilbert(signal_filtered)
        # I will use x and y to keep track of orthogonalization
        x0 = analytic_signal
        # Get power envelope
        x0_mag = np.abs(x0)
        # Get scaled conjugate used for orthogonalization estimation
        x0_conj_scaled = x0.conj()
        x0_conj_scaled /= x0_mag
        # Take square power envelope
        PEx = np.square(x0_mag)
        # Take log transform
        lnPEx = np.log(PEx+epsilon)
        # Remove mean for Pearson correlation calculation
        lnPEx_nomean = lnPEx - np.mean(lnPEx, axis=-1, keepdims=True) # normalize each roi timeseries
        # Get std for Pearson correlation calculation
        lnPEx_std = np.std(lnPEx, axis=-1)
        lnPEx_std[lnPEx_std == 0] = 1 # Prevent std = 0 problems
        # Prepare con matrix
        con0 = np.zeros((n_roi,n_roi))
        for roi_r, y0 in enumerate(x0): # for each y0
            # Calculate orthogonalized signal y with respect to x for all x
            # Using y_ort = imag(y*x_conj/|x|)
            # I checked the formula in temp_v3 and it works as intended
            # I want to orthogonalize element wise for each timepoint
            y0_ort = (y0*x0_conj_scaled).imag
            # Here y0_ort.shape = (n_roi, n_timepoints)
            # So y is current roi and the first axis gives each x it is orthogonalized to
            # Take the abs to get power envelope
            y0_ort = np.abs(y0_ort)
            # Prevent log(0) error when calculating y_ort on y
            y0_ort[roi_r] = 1. # this will be 0 zero after mean subtraction
            # Take square power envelope
            PEy = np.square(y0_ort) # squared power envelope
            # Take log transform
            lnPEy = np.log(PEy+epsilon)
            # Remove mean for pearson correlation calculation
            lnPEy_nomean = lnPEy - np.mean(lnPEy, axis=-1, keepdims=True)
            # Get std for Pearson correlation calculation
            lnPEy_std = np.std(lnPEy, axis=-1)
            lnPEy_std[lnPEy_std == 0] = 1.
            # Pearson correlation is expectation of X_nomean * Y_nomean for each time-series divided with standard deviations
            PEC = np.mean(lnPEx_nomean*lnPEy_nomean, axis=-1)
            PEC /= lnPEx_std
            PEC /= lnPEy_std
            con0[roi_r] = PEC
        # The con0 connectivity matrix should be read as correlation between
        # orthogonalized y (row number) and x (column number)
        # It is not symmetrical, as cor(roi2_ort, roi1) is not cor(roi1_ort, roi2)
        # To make it symmetrical the average of the absolute correlation
        # of the 2 possibilities for each pair are taken
        con0 = np.abs(con0)
        con0 = (con0.T+con0)/2.
        # Fisher's z transform - which is equivalent to arctanh
        con0 = np.arctanh(con0)
        # The diagonal is not 0 as I wanted to avoid numerical errors with log(0)
        # and used a small epsilon value. Thus the diagonal is explicitly set to 0
        
        # Save to array
        PEC_con0[:,:,list(freq_bands.keys()).index(fname)] = con0
    return PEC_con0

# Prepare variables
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
n_roi = len(labels)

# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

# PEC analysis
PEC_data_list = [0]*n_subjects
STCs_list = [0]*n_subjects

# Using inverse operator as generator interferes with concurrent processes
# If I run it for multiple subjects I run out of ram
# Thus concurrent processes are used inside the for loop
def PEC_analysis(input_args): # iterable epoch number and corresponding ts
    i2, ts = input_args
    # Estimate PEC
    PEC_con0 = PEC_estimation(ts, Freq_Bands, sfreq)
    print("Finished {} out of {} epochs".format(i2+1,n_epochs))
    return i2, PEC_con0, ts

for i in range(n_subjects):
    n_epochs, n_ch, n_timepoints = source_epochs[i].get_data().shape
    # Use different forward solutions depending on number of channels
    cur_subject_id = Subject_id[i]
    fwd = fwds[i]
    
    # Using assumption about equal variance and no correlations I make a diagonal matrix
    # Using the default option for 0.2µV std for EEG data
    noise_cov = mne.make_ad_hoc_cov(source_epochs[i].info, None)
    
    # Make inverse operator
    # Using default depth parameter = 0.8 and free orientation (loose = 1)
    inverse_operator = mne.minimum_norm.make_inverse_operator(source_epochs[i].info,
                                                              fwd, noise_cov,
                                                              loose = 1, depth = 0.8,
                                                              verbose = 0)
    src_inv = inverse_operator["src"]
    # Compute inverse solution and retrieve time series for each label
    # Preallocate memory
    label_ts = np.full((n_epochs,len(labels),n_timepoints),np.nan)
    # Define regularization
    snr = 9 # Zhang et al, 2020 used delta = 1/81, which is inverse SNR and correspond to lambda2
    # A for loop is used for each label due to memory issues when doing all labels at the same time
    for l in range(len(labels)):
        stc = mne.minimum_norm.apply_inverse_epochs(source_epochs[i],inverse_operator,
                                                    lambda2 = 1/(snr**2),
                                                    label = labels[l],
                                                    pick_ori = "vector",
                                                    return_generator=False,
                                                    method = "MNE", verbose = 0)
        # Use PCA to reduce the 3 orthogonal directions to 1 principal direction with max power
        # There can be ambiguity about the orientation, thus the one that
        # is pointing most "normal", i.e. closest 90 degrees to the skull is used
        stc_pca = [0]*len(stc)
        for ep in range(n_epochs):
            stc_pca[ep], pca_dir = stc[ep].project(directions="pca", src=src_inv)
        # Get mean time series for the whole label
        temp_label_ts = mne.extract_label_time_course(stc_pca, labels[l], src_inv, mode="mean_flip",
                                         return_generator=False, verbose=0)
        # Save to array
        label_ts[:,l,:] = np.squeeze(np.array(temp_label_ts))
        print("Finished estimating STC for {} out of {} ROIs".format(l+1,len(labels)))
    
    # Free up memory
    del stc

    # Prepare variables
    sfreq=source_epochs[i].info["sfreq"]
    n_epochs = len(source_epochs[i])
    # Estimate the pairwise PEC for each epoch
    PEC_con_subject = np.zeros((n_epochs,n_roi,n_roi,n_freq_bands))
    stcs0 = np.zeros((n_epochs,n_roi,int(sfreq)*4)) # 4s epochs
    # Make list of arguments to pass into PEC_analysis using the helper func
    args = []
    for i2 in range(n_epochs):
        args.append((i2,label_ts[i2]))
    
    with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
        for i2, PEC_result, stc_result in executor.map(PEC_analysis, args): # Function and arguments
            PEC_con_subject[i2] = PEC_result
            stcs0[i2] = stc_result
    
    # Save to list
    PEC_data_list[i] = PEC_con_subject # [subject](epoch,ch,ch,freq)
    STCs_list[i] = stcs0 # [subject][epoch,roi,timepoint]
    
    # Print progress
    print("Finished {} out of {} subjects".format(i+1,n_subjects))

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
    pickle.dump(PEC_data_list, file)
with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
    pickle.dump(STCs_list, file)

# # # Load
# with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
#     PEC_data_list = pickle.load(file)

# # Load
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
#     STCs_list = pickle.load(file)

# Average over eye status
eye_status = list(source_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
pec_data = np.zeros((n_subjects,n_eye_status,n_roi,n_roi,n_freq_bands))
for i in range(n_subjects):
    # Get indices for eyes open and closed
    EC_index = source_epochs[i].events[:,2] == 1
    EO_index = source_epochs[i].events[:,2] == 2
    # Average over the indices and save to array
    pec_data[i,0] = np.mean(PEC_data_list[i][EC_index], axis=0)
    pec_data[i,1] = np.mean(PEC_data_list[i][EO_index], axis=0)
    # Only use the lower diagonal as the diagonal should be 0 (or very small due to numerical errors)
    # And it is symmetric
    for f in range(n_freq_bands):
        pec_data[i,0,:,:,f] = np.tril(pec_data[i,0,:,:,f],k=-1)
        pec_data[i,1,:,:,f] = np.tril(pec_data[i,1,:,:,f],k=-1)

# Also save as dataframe format for feature selection
# Convert to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, pec_data.shape), indexing="ij"))) + [pec_data.ravel()])
pec_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# Change from numerical coding to actual values
eye_status = list(source_epochs[0].event_id.keys())
freq_bands_name = list(Freq_Bands.keys())
label_names = [label.name for label in labels]

index_values = [Subject_id,eye_status,label_names,label_names,freq_bands_name]
for col in range(len(index_values)):
    col_name = pec_data_df.columns[col]
    for shape in range(pec_data.shape[col]): # notice not dataframe but the array
        pec_data_df.loc[pec_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]

# Add group status
Group_status = np.array(["CTRL"]*len(pec_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in pec_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
pec_data_df.insert(3, "Group_status", Group_status)

# Remove all diagonal and upper-matrix entries by removing zeros
pec_data_df = pec_data_df.iloc[pec_data_df["Value"].to_numpy().nonzero()]

# Save df
pec_data_df.to_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))

# %% Sparse clustering of PEC for subtyping PTSD group
# They did it for both eye status together, so all data in one matrix
# Load PEC df
# pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_df.pkl"))
pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))

# Convert to wide format
# Make function to add measurement column for indexing
def add_measurement_column(df, measurement = "Text"):
    dummy_variable = [measurement]*df.shape[0]
    df.insert(1, "Measurement", dummy_variable)
    return df
# Make function to convert column tuple to string
def convertTupleHeader(header):
    header = list(header)
    str = "_".join(header)
    return str

# Prepare overall dataframe
PEC_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
# Add PEC
pec_data_df = add_measurement_column(pec_data_df, "PEC")
temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                    "Eye_status", "chx", "chy",
                                    "Freq_band"], dropna=True,
                               values="Value").reset_index(drop=True)
# check NaN is properly dropped and subject index is correct
assert pec_data_df.shape[0] == np.prod(temp_df.shape)
test1 = pec_data_df.iloc[np.random.randint(n_subjects),:]
assert test1["Value"] ==\
    temp_df[test1[1]][test1[2]][test1[3]][test1[5]][test1[6]][Subject_id.index(test1[0])]
# Fix column names
temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]

PEC_df = pd.concat([PEC_df,temp_df], axis=1)

# Add group status
Groups = ["CTRL", "PTSD"]
Group_status = np.array([0]*PEC_df.shape[0]) # CTRL = 0
Group_status[np.array([i in cases for i in PEC_df["Subject_ID"]])] = 1 # PTSD = 1
PEC_df.insert(1, "Group_status", Group_status)

# Only use PTSD patient group
PEC_df2 = PEC_df.loc[PEC_df["Group_status"]==1,:]

Subject_info_cols = ["Subject_ID","Group_status"]

# Use gridsearch and permutations to estimate gap statistic and use it to 
# determine number of clusters and sparsity s
# I will use 100 permutations and test 2 to 6 clusters as Zhang 2020
# Error when trying to determine Gap statistic for 1 cluster? Also in R package
max_clusters = 6
n_sparsity_feat = 20
perm_res = []
for k in range(1,max_clusters):
    # Cannot permute with 1 cluster
    n_clusters = k+1
    x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
    perm = pysparcl.cluster.permute_modified(x, k=n_clusters, verbose=True,
                                             nvals=n_sparsity_feat, nperms=100)
    perm_res.append(perm)

# Save the results
with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "wb") as file:
    pickle.dump(perm_res, file)

# # Load
# with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "rb") as file:
#     perm_res = pickle.load(file)

# Convert results to array
perm_res_arr = np.zeros((len(perm_res)*n_sparsity_feat,4))
for i in range(len(perm_res)):
    _, gaps, sdgaps, wbounds, _ = perm_res[i].values()
    for i2 in range(n_sparsity_feat):
        perm_res_arr[20*i+i2,0] = i+2 # cluster size
        perm_res_arr[20*i+i2,1] = gaps[i2] # gap statistic
        perm_res_arr[20*i+i2,2] = sdgaps[i2] # gap statistic std
        perm_res_arr[20*i+i2,3] = wbounds[i2] # sparsity feature s

# For each sparsity s, determine best k using one-standard-error criterion
# Meaning the cluster and sparsity is chosen for the smallest value of k for a fixed s
# that fulfill Gap(k) >= Gap(k+1)-std(k+1)
def one_standard_deviation_search(gaps, std):
    best_gaps = np.argmax(gaps)
    current_gaps = gaps[best_gaps]
    current_std = std[best_gaps]
    current_gaps_idx = best_gaps
    while (gaps[current_gaps_idx-1] >= current_gaps - current_std):
        if current_gaps_idx == 0:
            break
        else:
            current_gaps_idx -= 1
            current_gaps = gaps[current_gaps_idx]
            current_std = std[current_gaps_idx]
    out = current_gaps, current_std, current_gaps_idx
    return out

best_ks = np.zeros((n_sparsity_feat, 2))
all_s = np.unique(perm_res_arr[:,3])
plt.figure(figsize=(12,12))
for i2 in range(n_sparsity_feat):
    current_s = all_s[i2]
    gaps = perm_res_arr[perm_res_arr[:,3] == current_s,1]
    std = perm_res_arr[perm_res_arr[:,3] == current_s,2]
    _, _, idx = one_standard_deviation_search(gaps, std)
    # Save to array
    best_ks[i2,0] = current_s
    best_ks[i2,1] = perm_res_arr[perm_res_arr[:,3] == current_s,0][idx]
    # Plot gap
    plt.errorbar(perm_res_arr[perm_res_arr[:,3] == current_s,0].astype("int"),
             gaps, yerr=std, capsize=5, label = np.round(current_s,3))
plt.title("Gap statistic for different fixed s")
plt.legend(loc=1)
plt.xlabel("Number of clusters")
plt.ylabel("Gap statistic")

best_k = int(scipy.stats.mode(best_ks[:,1])[0])

# Determine s using fixed k as lowest s within 1 std of max gap statistic
# According to Witten & Tibshirani, 2010
best_gaps_idx = np.argmax(perm_res_arr[perm_res_arr[:,0] == best_k,1])
best_gaps = perm_res_arr[perm_res_arr[:,0] == best_k,1][best_gaps_idx]
best_gaps_std = perm_res_arr[perm_res_arr[:,0] == best_k,2][best_gaps_idx]
one_std_crit = perm_res_arr[perm_res_arr[:,0] == best_k,1]>=best_gaps-best_gaps_std

best_s = np.array([perm_res_arr[perm_res_arr[:,0] == best_k,3][one_std_crit][0]])

# Perform clustering with k clusters
x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
sparcl = pysparcl.cluster.kmeans(x, k=best_k, wbounds=best_s)[0]

# Save the results
with open(Feature_savepath+"PEC_drop_interpol_ch_sparse_kmeans.pkl", "wb") as file:
    pickle.dump(sparcl, file)

# Get overview of the features chosen and summarize feature type with countplot
nonzero_idx = sparcl["ws"].nonzero()
sparcl_features = PEC_df2.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]

# Prepare variables
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
eye_status = list(source_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

sparcl_feat = []
sparcl_feat_counts = []
for e in range(n_eye_status):
    ee = eye_status[e]
    for f in range(n_freq_bands):
        ff = list(Freq_Bands.keys())[f]
        temp_feat = sparcl_features[sparcl_features.str.contains(("_"+ee))]
        temp_feat = temp_feat[temp_feat.str.contains(("_"+ff))]
        # Save to list
        sparcl_feat.append(temp_feat)
        sparcl_feat_counts.append(["{}_{}".format(ee,ff), len(temp_feat)])

# Convert the list to dataframe to use in countplot
sparcl_feat_counts_df = pd.DataFrame(columns=["Eye_status", "Freq_band"])
for i in range(len(sparcl_feat_counts)):
    # If this feature type does not exist, then skip it
    if sparcl_feat_counts[i][1] == 0:
        continue
    ee, ff = sparcl_feat_counts[i][0].split("_")
    counts = sparcl_feat_counts[i][1]
    temp_df = pd.DataFrame({"Eye_status":np.repeat(ee,counts),
                            "Freq_band":np.repeat(ff,counts)})
    sparcl_feat_counts_df = sparcl_feat_counts_df.append(temp_df, ignore_index=True)

# Fix Freq_band categorical order
cat_type = pd.CategoricalDtype(categories=list(Freq_Bands.keys()), ordered=True)
sparcl_feat_counts_df["Freq_band"] = sparcl_feat_counts_df["Freq_band"].astype(cat_type)

plt.figure(figsize=(8,8))
g = sns.countplot(y="Freq_band", hue="Eye_status", data=sparcl_feat_counts_df)
plt.title("PEC Sparse K-means features")
plt.xlabel("Number of non-zero weights")
plt.ylabel("Frequency Band")

# %% Functional connectivity in source space
# MNE implementation of PLV and wPLI is phase across trials(epochs), e.g. for ERPs
# I'll use my own manually implemented PLV and wPLI across time and then average across epochs
# Notice that the new MNE-connectivity library now also takes phase across time

sfreq = final_epochs[0].info["sfreq"]
# error when using less than 5 cycles for spectrum estimation
# 1Hz too low with epoch length of 4, thus I changed the fmin to 1.25 for delta
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
freq_centers = np.array([2.5,6,10.5,21.5,40])
# Convert to tuples for the mne function
fmin=tuple([list(Freq_Bands.values())[f][0] for f in range(len(Freq_Bands))])
fmax=tuple([list(Freq_Bands.values())[f][1] for f in range(len(Freq_Bands))])

# Make linspace array for morlet waves
freq_centers = np.arange(fmin[0],fmax[-1]+0.25,0.25)
# Prepare Morlets
morlets = mne.time_frequency.tfr.morlet(sfreq,freq_centers,n_cycles=3)

# Make freqs array for indexing
freqs0 = [0]*n_freq_bands
for f in range(n_freq_bands):
    freqs0[f] = freq_centers[(freq_centers>=fmin[f]) & (freq_centers<=fmax[f])]

# The in-built connectivity function gives an (n_channel, n_channel, freqs output
# For loop over subject ID and eye status is implemented
n_subjects = len(Subject_id)
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]

# Load source labels
with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
    labels = pickle.load(file)
label_names = [label.name for label in labels]
n_sources = len(label_names)

# Connectivity methods
Loading
Loading full blame…