Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022
@author: Qianliang Li (glia@dtu.dk)
This script contains the code to estimate the following EEG features:
1. Power Spectral Density
2. Frontal Theta/Beta Ratio
3. Asymmetry
4. Peak Alpha Frequency
5. 1/f Exponents
6. Microstates
7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
8. Imaginary part of Coherence
9. Weighted Phase Lag Index
10. (Orthogonalized) Power Envelope Correlations
11. Granger Causality
It should be run after Preprocessing.py
All features are saved in pandas DataFrame format for the machine learning
pipeline
Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc
The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""
# Set working directory
import os
wkdir = "/home/glia/EEG"
os.chdir(wkdir)
# Load all libraries from the Preamble
from Preamble import *
# %% Load preprocessed epochs and questionnaire data
load_path = "./PreprocessedData"
# Get filenames
files = []
for r, d, f in os.walk(load_path):
for file in f:
if ".fif" in file:
files.append(os.path.join(r, file))
files.sort()
# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
temp = files[i].split("\\")
temp = temp[-1].split("_")
Subject_id[i] = int(temp[0])
n_subjects = len(Subject_id)
# Load Final epochs
final_epochs = [0]*n_subjects
for n in range(n_subjects):
final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
verbose=0)
# Load dropped epochs - used for gap idx in microstates
bad_subjects = [12345] # list with subjects that were excluded due to too many dropped epochs/chs
Drop_epochs_df = pd.read_pickle("./Preprocessing/dropped_epochs.pkl")
good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)
### Load questionnaire data
# For the purposes of this demonstration I will make a dummy dataframe
# The original code imported csv files with questionnaire data and group status
final_qdf = pd.DataFrame({"Subject_ID":Subject_id,
"Age":[23,26],
"Gender":[0,0],
"Group_status":[0,1],
"PCL_total":[33,56],
"Q1":[1.2, 2.3],
"Q2":[1.7, 1.5],
"Qn":[2.1,1.0]})
# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
n_groups = 2
Groups = ["CTRL", "PTSD"]
# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"
# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]
# Pre-allocate memory
power_bands = [0]*len(final_epochs)
def power_band_estimation(n):
# Get index for eyes open and eyes closed
EC_index = final_epochs[n].events[:,2] == 1
EO_index = final_epochs[n].events[:,2] == 2
# Calculate the power spectral density
psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
temp_power_band = []
for fmin, fmax in Freq_Bands.values():
# Calculate the power each frequency band
psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
# Calculate the mean for each eye status
psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
psds_band[EO_index,:].mean(axis=0)])
# Append for each freq band
temp_power_band.append(psds_band_eye)
# Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
# The list is reshaped and absolute and relative power are calculated
abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
# each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
# Make one list in 1 dimension
abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
## Output: First the channels, then the eye status and finally the frequency bands are concatenated
## E.g. element 26 is 3rd channel, eyes open, first frequency band
#assert abs_power_values[26] == abs_power_band[0,1,2]
#assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
#assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
# Get result
res = np.concatenate([abs_power_values,rel_power_values],axis=0)
return n, res
with concurrent.futures.ProcessPoolExecutor() as executor:
for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
power_bands[n] = result
# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Brain_region_labels = ["Frontal","Central","Posterior"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)
# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
"Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
"Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
"PSD": list(np.concatenate(power_bands, axis=0))
})
# Absolute power is in decibels (10*log10(power))
# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Save the dataframe
power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)
# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")]
# Calculate average frontal power
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta
# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]
# Take the natural log of ratio
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])
# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )
frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
def calculate_asymmetry(i):
ii = np.unique(power_df["Subject_ID"])[i]
temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
for e in range(len(np.unique(power_df["Eye_status"]))):
ee = np.unique(power_df["Eye_status"])[e]
for f in range(len(list(Freq_Bands.keys()))):
ff = list(Freq_Bands.keys())[f]
# Get the specific part of the df
temp_power_df = power_df[(power_df["Quant_status"] == qq) &
(power_df["Eye_status"] == ee) &
(power_df["Subject_ID"] == ii) &
(power_df["Freq_band"] == ff)].copy()
# Convert from dB to raw power
temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
# Calculate the power asymmetry
for r in range(len(ROI)):
rr = ROI[r]
temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
~(temp_power_df["Brain_side"] == "Mid")]
# Sort using channel names to make sure F8-F7 and not F4-F7 etc.
temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
# Get the log power
R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
ln_R_power = np.log(R_power) # get log power
L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
ln_L_power = np.log(L_power) # get log power
# Pairwise subtraction followed by averaging
asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
# Save it to the array
temp_asymmetry[e,f,r] = asymmetry_value
# Print progress
print("{} out of {} finished testing".format(i+1,n_subjects))
return i, temp_asymmetry
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
asymmetry[i,:,:,:] = res
# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# ROIs
n_ROI = len(ROI)
# Make the dataframe
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
"Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
"ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
"Asymmetry_score": asymmetry.flatten(order="C")
})
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc
# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]
i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]
assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]
# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))
# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent
def FOOOF_estimation(i):
PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
# Get Eye status
eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
# Calculate the power spectral density
psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
# Retrieve psds for the 2 conditions and calculate mean across epochs
psds = []
for e in range(n_eye_status):
# Get the epochs for specific eye condition
temp_psd = psd[eye_idx[e],:,:]
# Calculate the mean across epochs
temp_psd = np.mean(temp_psd, axis=0)
# Save
psds.append(temp_psd)
# Try multiple start freq
PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
for e in range(n_eye_status):
psds_avg = psds[e]
for f in range(len(freq_start_it_range)):
# Initiate FOOOF group for analysis of multiple PSD
fg = fooof.FOOOFGroup()
# Set the frequency range to fit the model
freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
# Fit to each source PSD separately, but in parallel
fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
# Extract aperiodic parameters
aps = fg.get_params('aperiodic_params')
# Extract peak parameters
peaks = fg.get_params('peak_params')
# Extract goodness-of-fit metrics
r2s = fg.get_params('r_squared')
# Save OOF and r2s
OOF_data00[e,:,f] = aps
r2s00[e,:,f] = r2s
# Find the alpha peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the alpha band
in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
if sum(in_alpha_band) > 0: # Any alpha peaks?
# Choose the peak with the highest power
max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
# Save results
PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
else:
# No alpha peaks
PAF_data00[e,c,f] = [np.nan]*3
# Check criterias
good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
# Save the data or NaN if criterias were not fulfilled
for e in range(n_eye_status):
for c in range(n_channels):
if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
OOF_data0[e,c] = [np.nan]*2
else: # Save OOF associated with greatest r^2 that fulfilled criterias
OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
PAF_data0[e,c] = [np.nan]*3
else: # Save PAF associated with greatest r^2 that fulfilled criterias
PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
print("Finished {} out of {} subjects".format(i+1,n_subjects))
return i, PAF_data0, OOF_data0
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
PAF_data[i] = PAF_result
OOF_data[i] = OOF_result
# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
pickle.dump(PAF_data, file)
with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
pickle.dump(OOF_data, file)
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
PAF_data_df = temp_df # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)
# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
PAF_data_df_global.insert(3, "Measurement", dummy_variable )
# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = "Frontal"
Brain_region[np.array([i in Central_chs for i in ch_names])] = "Central"
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = "Posterior"
PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# Save the dataframes
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
# Convert to Pandas dataframe (only keep exponent parameter for OOF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = OOF_data[:,:,:,1]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
OOF_data_df = temp_df # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
OOF_data_df.insert(3, "Group_status", Group_status)
# Regional OOF
OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# Save the dataframes
OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]
# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
# Transform data to correct shape
micro_data.append(final_epochs[i].get_data()) # get data
arr_shape = micro_data[i].shape # get shape
micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# Get indices for eyes open and closed
EC_index = final_epochs[i].events[:,2] == 1
EO_index = final_epochs[i].events[:,2] == 2
# Repeat with 4s * sample frequency to correct for concatenation of times and epochs
EC_index = np.repeat(EC_index,4*sfreq)
EO_index = np.repeat(EO_index,4*sfreq)
# Save data where it is divided into eye status
EC_micro_data.append(micro_data[i][EC_index])
EO_micro_data.append(micro_data[i][EO_index])
# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)
# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
global_gev.append(np.sum(gev))
cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)
#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]
# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# we used 4 microstates
# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
n_maps = 4
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]
# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []
# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
for r in range(n_run):
maps = [0]*2
m_labels = [0]*2
gfp_peaks = [0]*2
gev = [0]*2
# Eyes closed
counter = 0
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(np.array(EC_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
# Eyes open
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(np.array(EO_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
print("Finished {} out of {}".format(r+1, n_run))
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Save the results
with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "wb") as file:
pickle.dump(microstate_cluster_results, file)
# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
# microstate_cluster_results = pickle.load(file)
# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]
# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")
# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2] # EC
order[1] = [3,1,0,2] # EO
for i in range(len(order)):
maps[i] = maps[i][order[i],:] # re-order maps
gev[i] = gev[i][order[i]] # re-order GEV
# Make directory to find and replace map labels
dic0 = {value:key for key, value in enumerate(order[i])}
m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels
# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1],[1,1,1,-1]]
for i in range(len(order)):
for m in range(n_maps):
maps[i][m] *= sign_swap[i][m]
# Plot the maps and save
save_path = "/home/glia/Analysis/Figures/Microstates/"
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
# Save the figure
fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))
# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
n_t = data.shape[0]
n_ch = data.shape[1]
data = data - data.mean(axis=1, keepdims=True)
# GFP peaks
gfp = np.std(data, axis=1)
gfp_peaks = locmax(gfp)
gfp_values = gfp[gfp_peaks]
gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
n_gfp = gfp_peaks.shape[0]
# Spatial correlation
C = np.dot(data, maps.T)
C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
return C
C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]
# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
for Lmap in range(n_maps):
for Mmap in range(n_maps):
sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number", labelpad=10)
fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))
# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
for imap in range(n_maps):
sns.distplot(C[i][:,imap], ax = axarr[imap])
plt.xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number")
# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data
# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]
micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
# Get indices for subject
micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
# Get labels for subject i EO
micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
# Save
micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
# Get indices with gaps
# Dropped epochs are first considered
# Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
# Get epochs for each condition
EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
(Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
# Get indices for the epochs for EC that were dropped and correct for changing index due to drop
EC_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EC_drop_epochs)):
drop_epoch_number = EC_drop_epochs[d]
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
if len(EC_drop_epochs_gaps_idx) > 0:
for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EC_drop_epochs_gaps_idx[0] == -1:
EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
# Get indices for the epochs for EO that were dropped and correct for changing index due to drop
EO_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EO_drop_epochs)):
drop_epoch_number = EO_drop_epochs[d]-75
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
if len(EO_drop_epochs_gaps_idx) > 0:
for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EO_drop_epochs_gaps_idx[0] == -1:
EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
# Gaps between trials
Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
EC_trial_gaps_idx = []
EO_trial_gaps_idx = []
counter_EC = 0
counter_EO = 0
for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
(EC_drop_epochs < Trial_indices[t+1])]
# Correct the trial id for any potential drops within that trial
counter_EC += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
(EO_drop_epochs < Trial_indices[t+1]+75)]
# Correct the trial id for any potential drops within that trial
counter_EO += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
# Concatenate all drop indices
gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
# Make on with trial gaps only for use in LRTC analysis
gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])
# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))
# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO
microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
for i in range(n_subjects):
# Calculate ratio of time covered
temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
# Calculate transition matrix
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
# Calculate Shannon entropy
temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
# Save the data
microstate_time_data[i,0,:] = temp_EC_p_hat
microstate_time_data[i,1,:] = temp_EO_p_hat
microstate_transition_data[i,0,:,:] = temp_EC_T_hat
microstate_transition_data[i,1,:,:] = temp_EO_T_hat
microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy
# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 4 x 4 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4",
"M2->M1", "M2->M2", "M2->M3", "M2->M4",
"M3->M1", "M3->M2", "M3->M3", "M3->M4",
"M4->M1", "M4->M2", "M4->M3", "M4->M4"]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
col_name = microstate_transition_data_df.columns[col]
for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)
# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))
# Convert time covered data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4]
index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
col_name = microstate_time_df.columns[col]
for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)
# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2
microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)
# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
col_name = microstate_entropy_df.columns[col]
for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)
# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
# %% Long-range temporal correlations (LRTC)
"""
See Hardstone et al, 2012
Hurst exponent estimation steps:
1. Preprocess
2. Band-pass filter for frequency band of interest
3. Hilbert transform to obtain amplitude envelope
4. Perform DFA
4.1 Compute cumulative sum of time series to create signal profile
4.2 Define set of window sizes (see below)
4.3 Remove the linear trend using least-squares for each window
4.4 Calculate standard deviation for each window and take the mean
4.5 Plot fluctuation function (Standard deviation) as function
for all window sizes, on double logarithmic scale
4.6 The DFA exponent alpha correspond to Hurst exponent
f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
If 0 < alpha < 0.5: The process exhibits anti-correlations
If 0.5 < alpha < 1: The process exhibits positive correlations
If alpha = 0.5: The process is indistinguishable from a random process
If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
Window sizes should be equally spaced on a logarithmic scale
Sizes should be at least 4 samples and up to 10% of total signal length
Filters can influence neighboring samples, thus filters should be tested
on white noise to estimate window sizes that are unaffected by filters
filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
"""
# From simulations with white noise I determined window size thresholds for the 5 frequency bands:
thresholds = [7,7,7,6.5,6.5]
# And their corresponding log step sizes
with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
log_win_sizes = pickle.load(filehandle)
# Variables for the the different conditions
# Sampling frequency
sfreq = final_epochs[0].info["sfreq"]
# Channels
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
# Frequency
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# Eye status
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
### Estimating Hurst exponent for the data
# The data should be re-referenced to common average (Already done)
# Data are transformed to numpy arrays
# Then divided into EO and EC and further into each of the 5 trials
# So DFA is estimated for each trial separately, which was concluded from simulations
gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
n_trials = 5
H_data = []
for i in range(n_subjects):
# Transform data to correct shape
temp_arr = final_epochs[i].get_data() # get data
arr_shape = temp_arr.shape # get shape
temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# Get indices for eyes open and closed
EC_index = final_epochs[i].events[:,2] == 1
EO_index = final_epochs[i].events[:,2] == 2
# Repeat with 4s * sample frequency to correct for concatenation of times and epochs
EC_index = np.repeat(EC_index,4*sfreq)
EO_index = np.repeat(EO_index,4*sfreq)
# Divide into eye status
EC_data = temp_arr[EC_index]
EO_data = temp_arr[EO_index]
# Divide into trials
EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
EC_trial_data = []
EO_trial_data = []
for t in range(n_trials):
EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
# Save data
H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
# Calculate H for each subject, eye status, trial, freq and channel
H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
w_len = [len(ele) for ele in log_win_sizes]
DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
DFA_arr[:] = np.nan
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started",c_time1)
# Nolds are already using all cores so multiprocessing with make it slower
# Warning occurs when R2 is estimated during detrending - but R2 is not used
warnings.simplefilter("ignore")
for i in range(n_subjects):
# Pre-allocate memory
DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
DFA_temp[:] = np.nan
H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
for e in range(n_eye_status):
for trial in range(n_trials):
for c in range(n_channels):
# Get the data
signal = H_data[i][e][trial][:,c]
counter = 0 # prepare counter
for fmin, fmax in Freq_Bands.values():
# Filter for each freq band
signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
l_freq=fmin, h_freq=fmax)
# Hilbert transform
analytic_signal = scipy.signal.hilbert(signal_filtered)
# Get Amplitude envelope
# np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
ampltude_envelope = np.abs(analytic_signal)
# Perform DFA using predefined window sizes from simulation
a, dfa_data = nolds.dfa(ampltude_envelope,
nvals=np.exp(log_win_sizes[counter]).astype("int"),
debug_data=True)
# Save DFA results
DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
H_temp[e,trial,c,counter] = a
# Update counter
counter += 1
# Print run status
print("Finished {} out of {}".format(i+1,n_subjects))
# Save the results
H_arr[i] = H_temp
DFA_arr[i] = DFA_temp
warnings.simplefilter("default")
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nCurrent Time",c_time2)
# Save the DFA analysis data
np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
np.save(Feature_savepath+"H_arr.npy", H_arr)
# Load
DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
H_arr = np.load(Feature_savepath+"H_arr.npy")
# Average the Hurst Exponent across trials
H_arr = np.mean(H_arr, axis=2)
# Convert to Pandas dataframe (Hurst exponent)
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
ch_name = final_epochs[0].info["ch_names"]
index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
for col in range(len(index_values)):
col_name = H_data_df.columns[col]
for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
H_data_df.insert(2, "Group_status", Group_status)
# Fix Freq_band categorical order
H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Global Hurst exponent
H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# Add group status (cannot use group_by as each subject only have 1 group, not both)
Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# Add to dataframe
H_data_df_global.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
H_data_df_global.insert(3, "Measurement", dummy_variable )
# Save the data
H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
# %% Source localization of sensor data
# Using non-interpolated channels
# Even interpolated channels during preprocessing and visual inspection
# are dropped
# Prepare epochs for estimation of source connectivity
source_epochs = [0]*n_subjects
for i in range(n_subjects):
source_epochs[i] = final_epochs[i].copy()
### Make forward solutions
# A forward solution is first made for all individuals with no dropped channels
# Afterwards individual forward solutions are made for subjects with bad
# channels that were interpolated in preprocessing and these are dropped
# First forward operator is computed using a template MRI for each dataset
fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
subjects_dir = os.path.dirname(fs_dir)
trans = "fsaverage"
src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# Read the template sourcespace
sourcespace = mne.read_source_spaces(src)
temp_idx = 0 # Index with subject that had no bad channels
subject_eeg = source_epochs[temp_idx].copy()
subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# Make forward solution
fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# Save forward operator
fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# A specific forward solution is also made for each subject with bad channels
with open("./Preprocessing/bad_ch.pkl", "rb") as file:
bad_ch = pickle.load(file)
All_bad_ch = bad_ch
All_drop_epochs = dropped_epochs_df
All_dropped_ch = []
Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# For each subject with bad channels, drop the channels and make forward operator
for n in range(len(Bad_ch_subjects)):
Subject = Bad_ch_subjects.iloc[n]
try:
Subject_idx = Subject_id.index(Subject)
# Get unique bad channels
Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
Bad_ch1 = []
for i2 in range(len(Bad_ch0)):
if type(Bad_ch0[i2]) == list:
for i3 in range(len(Bad_ch0[i2])):
Bad_ch1.append(Bad_ch0[i2][i3])
elif type(Bad_ch0[i2]) == str:
Bad_ch1.append(Bad_ch0[i2])
Bad_ch1 = np.unique(Bad_ch1)
# Drop the bad channels
source_epochs[Subject_idx].drop_channels(Bad_ch1)
# Save the overview of dropped channels
All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
# Make forward operator
subject_eeg = source_epochs[Subject_idx].copy()
subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# Make forward solution
fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# Save forward operator
fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
except:
print(Subject,"was already dropped")
with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
pickle.dump(All_dropped_ch, filehandle)
# %% Load forward operators
# Re-use for all subjects without dropped channels
fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
fwd = mne.read_forward_solution(fname_fwd)
fwd_list = [fwd]*n_subjects
# Use specific forward solutions for subjects with dropped channels
with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
All_dropped_ch = pickle.load(file)
for i in range(len(All_dropped_ch)):
Subject = All_dropped_ch[i][0]
Subject_idx = All_dropped_ch[i][1]
fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
fwd = mne.read_forward_solution(fname_fwd)
fwd_list[Subject_idx] = fwd
# Check the correct number of channels are present in fwd
random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
# %% Make parcellation
# After mapping to source space, I end up with 20484 vertices
# but I wanted to map to fewer sources and not many more
# Thus I need to perform parcellation
# Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
subjects_dir=subjects_dir)
labels_aparc = labels_aparc[:-2] # remove unknowns
labels_aparc_names = [label.name for label in labels_aparc]
# Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# Making fuction to take subset of a label
def label_subset(label, subset, name="ROI_name"):
label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
label.values[subset], label.hemi,
name = "{}-{}".format(name,label.hemi),
subject = label.subject, color = None)
return label_subset
### Visual area 1 (V1 and somatosensory cortex BA1-3)
label_filenames = ["lh.V1.label", "rh.V1.label",
"lh.BA1.label", "rh.BA1.label",
"lh.BA2.label", "rh.BA2.label",
"lh.BA3a.label", "rh.BA3a.label",
"lh.BA3b.label", "rh.BA3b.label"]
labels0 = [0]*len(label_filenames)
for i, filename in enumerate(label_filenames):
labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# Add V1 to final label variable
labels = labels0[:2]
# Rename to remove redundant hemi information
labels[0].name = "V1-{}".format(labels[0].hemi)
labels[1].name = "V1-{}".format(labels[1].hemi)
# Assign a color
labels[0].color = matplotlib.colors.to_rgba("salmon")
labels[1].color = matplotlib.colors.to_rgba("salmon")
# Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
SMC_labels = labels0[2:]
for hem in range(2):
SMC_p1 = SMC_labels[hem]
for i in range(1,len(SMC_labels)//2):
SMC_p2 = SMC_labels[hem+2*i]
p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
SMC_p1 = SMC_p1.__add__(SMC_p21)
SMC_p1.name = SMC_p21.name
# Assign a color
SMC_p1.color = matplotlib.colors.to_rgba("orange")
labels.append(SMC_p1)
### Inferior frontal junction
# Located at junction between inferior frontal and inferior precentral sulcus
label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
pos1 = temp_labels[0].pos
pos2 = temp_labels[2].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# Combine the 2 parts
IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
IFJ_label.name = IFJ_label_p1.name
# Assign a color
IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# Append to final list
labels.append(IFJ_label)
# Do the same for the right hemisphere
pos1 = temp_labels[1].pos
pos2 = temp_labels[3].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# Combine the 2 parts
IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
IFJ_label.name = IFJ_label_p1.name
# Assign a color
IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# Append to final list
labels.append(IFJ_label)
### Intraparietal sulcus
label_aparc_names0 = ["S_intrapariet_and_P_trans"]
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
for i in range(len(labels_aparc_idx)):
labels.append(labels_aparc[labels_aparc_idx[i]].copy())
labels[-1].name = "IPS-{}".format(labels[-1].hemi)
### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
label_aparc_names0 = ["G_front_middle","G_precentral"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
temp_label0 = temp_labels[0]
G_fm_y = temp_label0.pos[:,1]
thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# Take 10% closest for precentral gyrus (most anterior)
temp_label0 = temp_labels[2]
# I cannot only use y (anterior/posterior) but also need to restrict z-position
G_pre_cen_z = temp_label0.pos[:,2]
thres_G_pre_cen_z = 0.04 # visually inspected threshold
G_pre_cen_y = temp_label0.pos[:,1]
thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# Combine the 2 parts
FEF_label = FEF_label_p1.__add__(FEF_label_p2)
FEF_label.name = FEF_label_p1.name
# Assign a color
FEF_label.color = matplotlib.colors.to_rgba("aqua")
# Append to final list
labels.append(FEF_label)
# Do the same for the right hemisphere
temp_label0 = temp_labels[1]
G_fm_y = temp_label0.pos[:,1]
thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
temp_label0 = temp_labels[3]
G_pre_cen_z = temp_label0.pos[:,2]
thres_G_pre_cen_z = 0.04 # visually inspected threshold
G_pre_cen_y = temp_label0.pos[:,1]
thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# Combine the 2 parts
FEF_label = FEF_label_p1.__add__(FEF_label_p2)
FEF_label.name = FEF_label_p1.name
# Assign a color
FEF_label.color = matplotlib.colors.to_rgba("aqua")
# Append to final list
labels.append(FEF_label)
### Supplementary eye fields
# Located at caudal end of frontal gyrus and upper part of paracentral sulcus
label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
pos1 = temp_labels[0].pos
pos2 = temp_labels[2].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# Notice that superior frontal gyrus is around 4 times bigger than paracentral
len(l1_idx)/pos1.shape[0]
len(l2_idx)/pos2.shape[0]
# Only use upper part
z_threshold = 0.06 # visually inspected
l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# Combine the 2 parts
SEF_label = SEF_label_p1.__add__(SEF_label_p2)
SEF_label.name = SEF_label_p1.name
# Assign a color
SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# Append to final list
labels.append(SEF_label)
# Do the same for the right hemisphere
pos1 = temp_labels[1].pos
pos2 = temp_labels[3].pos
distm = scipy.spatial.distance.cdist(pos1,pos2)
# Find the closest points between the 2 ROIs
l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# Notice that superior frontal gyrus is around 4 times bigger than paracentral
len(l1_idx)/pos1.shape[0]
len(l2_idx)/pos2.shape[0]
# Only use upper part
z_threshold = 0.06 # visually inspected
l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# Combine the 2 parts
SEF_label = SEF_label_p1.__add__(SEF_label_p2)
SEF_label.name = SEF_label_p1.name
# Assign a color
SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# Append to final list
labels.append(SEF_label)
### Posterior cingulate cortex
label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
labels0 = []
for hem in range(2):
PCC_p1 = temp_labels[hem]
for i in range(1,len(temp_labels)//2):
PCC_p2 = temp_labels[hem+2*i]
PCC_p1 = PCC_p1.__add__(PCC_p2)
PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
labels0.append(PCC_p1)
# Combine the 2 hemisphere in 1 label
labels.append(labels0[0].__add__(labels0[1]))
### Medial prefrontal cortex
# From their schematic it looks like rostral 1/4 of superior frontal gyrus
label_aparc_names0 = ["G_front_sup"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
temp_labels.append(temp_labels0)
# Combine the 2 hemisphere in 1 label
labels.append(temp_labels[0].__add__(temp_labels[1]))
### Angular gyrus
label_aparc_names0 = ["G_pariet_inf-Angular"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels.name = "ANG-{}".format(temp_labels.hemi)
labels.append(temp_labels)
### Posterior middle frontal gyrus
label_aparc_names0 = ["G_front_middle"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
labels.append(temp_labels)
### Inferior parietal lobule
# From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# Split angular in 2 and get rostral part
temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# Split supramarginal in 2 and get posterior part
temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]
for hem in range(2):
PCC_p1 = temp_labels[hem]
for i in range(1,len(temp_labels)//2):
PCC_p2 = temp_labels[hem+2*i]
PCC_p1 = PCC_p1.__add__(PCC_p2)
PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
labels.append(PCC_p1)
### Orbital gyrus
# From their figure it seems to correspond to orbital part of inferior frontal gyrus
label_aparc_names0 = ["G_front_inf-Orbital"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels.name = "ORB-{}".format(temp_labels.hemi)
labels.append(temp_labels)
### Middle temporal gyrus
# From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
label_aparc_names0 = ["G_temporal_middle"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
temp_labels.name = "MTG-{}".format(temp_labels.hemi)
labels.append(temp_labels)
### Anterior middle frontal gyrus
label_aparc_names0 = ["G_front_middle"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
labels.append(temp_labels)
### Insula
label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
for hem in range(2):
PCC_p1 = temp_labels[hem]
for i in range(1,len(temp_labels)//2):
PCC_p2 = temp_labels[hem+2*i]
PCC_p1 = PCC_p1.__add__(PCC_p2)
PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
labels.append(PCC_p1)
### (Dorsal) Anterior Cingulate Cortex
label_aparc_names0 = ["G_and_S_cingul-Ant"]
temp_labels = []
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# Combine the 2 hemisphere in 1 label
labels.append(temp_labels[0].__add__(temp_labels[1]))
### Supramarginal Gyrus
label_aparc_names0 = ["G_pariet_inf-Supramar"]
for i in range(len(label_aparc_names0)):
labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
for i2 in range(len(labels_aparc_idx)):
temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
temp_labels.name = "SUP-{}".format(temp_labels.hemi)
labels.append(temp_labels)
print("{} ROIs have been defined".format(len(labels)))
# # Visualize positions
# fig = plt.figure()
# ax = fig.add_subplot(111, projection="3d")
# for i in range(0,3):
# temp_pos = temp_labels[i].pos
# ax.scatter(temp_pos[:,0],temp_pos[:,1],temp_pos[:,2], marker="o", alpha=0.1)
# # Add to plot
# ax.scatter(labels[-1].pos[:,0],labels[-1].pos[:,1],labels[-1].pos[:,2], marker="o")
# # Visualize the labels
# # temp_l = labels_aparc[labels_aparc_idx[0]]
# temp_l = labels[-2]
# l_stc = stc[100].in_label(temp_l)
# l_stc.vertices
# l_stc.plot(**surfer_kwargs)
# Save the annotation file
with open("custom_aparc2009_Li_et_al_2022.pkl", "wb") as file:
pickle.dump(labels, file)
# %% Calculate orthogonalized power envelope connectivity in source space
# In non-interpolated channels
# Updated 22/1 - 2021 to use delta = 1/81 and assumption
# about non-correlated and equal variance noise covariance matrix for channels
# Load
with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
labels = pickle.load(file)
label_names = [label.name for label in labels]
# Define function to estimate PEC
def PEC_estimation(x, freq_bands, sfreq=200):
"""
This function takes a source timeseries signal x and performs:
1. Bandpass filtering
2. Hilbert transform to yield analytical signal
3. Compute all to all connectivity by iteratively computing for each pair
a. Orthogonalization
b. Computing power envelopes by squaring the signals |x|^2
c. Log-transform to enhance normality
d. Pearson's correlation between each pair
e. Fisher's r-to-z transform to enhance normality
The code has been optimized by inspiration from MNE-Python's function:
mne.connectivity.enelope_correlation.
In MNE-python version < 0.22 there was a bug, but after the fix in 0.22
the mne function is equivalent to my implementation, although they don't
use epsilon but gives same result with a RuntimeWarning about log(0)
IMPORTANT NOTE:
Filtering introduce artifacts for first and last timepoint
The values are very low, more than 1e-12 less than the others
If they are not removed, then they will heavily influence Pearson's
correlation as it is outlier sensitive
Inputs:
x - The signal in source space as np.array with shape (ROIs,Timepoints)
freq_bands - The frequency bands of interest as a dictionary e.g.
{"alpha": [8.0, 13.0], "beta": [13.0, 30.0]}
sfreq - The sampling frequency in Hertz
Output:
The pairwise connectivity matrix
"""
n_roi, n_timepoints = x.shape
n_freq_bands = len(freq_bands)
epsilon = 1e-100 # small value to prevent log(0) errors
# Filter the signal in the different freq bands
PEC_con0 = np.zeros((n_roi,n_roi,n_freq_bands))
for fname, frange in freq_bands.items():
fmin, fmax = [float(interval) for interval in frange]
signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
fir_design="firwin", verbose=0)
# Filtering on finite signals will yield very low values for first
# and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
# Outlier sensitive methods, like Pearson's correlation, is therefore
# heavily affected and this systematic error is removed by removing
# the first and last timepoint
signal_filtered = signal_filtered[:,1:-1]
# Hilbert transform
analytic_signal = scipy.signal.hilbert(signal_filtered)
# I will use x and y to keep track of orthogonalization
x0 = analytic_signal
# Get power envelope
x0_mag = np.abs(x0)
# Get scaled conjugate used for orthogonalization estimation
x0_conj_scaled = x0.conj()
x0_conj_scaled /= x0_mag
# Take square power envelope
PEx = np.square(x0_mag)
# Take log transform
lnPEx = np.log(PEx+epsilon)
# Remove mean for Pearson correlation calculation
lnPEx_nomean = lnPEx - np.mean(lnPEx, axis=-1, keepdims=True) # normalize each roi timeseries
# Get std for Pearson correlation calculation
lnPEx_std = np.std(lnPEx, axis=-1)
lnPEx_std[lnPEx_std == 0] = 1 # Prevent std = 0 problems
# Prepare con matrix
con0 = np.zeros((n_roi,n_roi))
for roi_r, y0 in enumerate(x0): # for each y0
# Calculate orthogonalized signal y with respect to x for all x
# Using y_ort = imag(y*x_conj/|x|)
# I checked the formula in temp_v3 and it works as intended
# I want to orthogonalize element wise for each timepoint
y0_ort = (y0*x0_conj_scaled).imag
# Here y0_ort.shape = (n_roi, n_timepoints)
# So y is current roi and the first axis gives each x it is orthogonalized to
# Take the abs to get power envelope
y0_ort = np.abs(y0_ort)
# Prevent log(0) error when calculating y_ort on y
y0_ort[roi_r] = 1. # this will be 0 zero after mean subtraction
# Take square power envelope
PEy = np.square(y0_ort) # squared power envelope
# Take log transform
lnPEy = np.log(PEy+epsilon)
# Remove mean for pearson correlation calculation
lnPEy_nomean = lnPEy - np.mean(lnPEy, axis=-1, keepdims=True)
# Get std for Pearson correlation calculation
lnPEy_std = np.std(lnPEy, axis=-1)
lnPEy_std[lnPEy_std == 0] = 1.
# Pearson correlation is expectation of X_nomean * Y_nomean for each time-series divided with standard deviations
PEC = np.mean(lnPEx_nomean*lnPEy_nomean, axis=-1)
PEC /= lnPEx_std
PEC /= lnPEy_std
con0[roi_r] = PEC
# The con0 connectivity matrix should be read as correlation between
# orthogonalized y (row number) and x (column number)
# It is not symmetrical, as cor(roi2_ort, roi1) is not cor(roi1_ort, roi2)
# To make it symmetrical the average of the absolute correlation
# of the 2 possibilities for each pair are taken
con0 = np.abs(con0)
con0 = (con0.T+con0)/2.
# Fisher's z transform - which is equivalent to arctanh
con0 = np.arctanh(con0)
# The diagonal is not 0 as I wanted to avoid numerical errors with log(0)
# and used a small epsilon value. Thus the diagonal is explicitly set to 0
# Save to array
PEC_con0[:,:,list(freq_bands.keys()).index(fname)] = con0
return PEC_con0
# Prepare variables
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
n_roi = len(labels)
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# PEC analysis
PEC_data_list = [0]*n_subjects
STCs_list = [0]*n_subjects
# Using inverse operator as generator interferes with concurrent processes
# If I run it for multiple subjects I run out of ram
# Thus concurrent processes are used inside the for loop
def PEC_analysis(input_args): # iterable epoch number and corresponding ts
i2, ts = input_args
# Estimate PEC
PEC_con0 = PEC_estimation(ts, Freq_Bands, sfreq)
print("Finished {} out of {} epochs".format(i2+1,n_epochs))
return i2, PEC_con0, ts
for i in range(n_subjects):
n_epochs, n_ch, n_timepoints = source_epochs[i].get_data().shape
# Use different forward solutions depending on number of channels
cur_subject_id = Subject_id[i]
fwd = fwds[i]
# Using assumption about equal variance and no correlations I make a diagonal matrix
# Using the default option for 0.2µV std for EEG data
noise_cov = mne.make_ad_hoc_cov(source_epochs[i].info, None)
# Make inverse operator
# Using default depth parameter = 0.8 and free orientation (loose = 1)
inverse_operator = mne.minimum_norm.make_inverse_operator(source_epochs[i].info,
fwd, noise_cov,
loose = 1, depth = 0.8,
verbose = 0)
src_inv = inverse_operator["src"]
# Compute inverse solution and retrieve time series for each label
# Preallocate memory
label_ts = np.full((n_epochs,len(labels),n_timepoints),np.nan)
# Define regularization
snr = 9 # Zhang et al, 2020 used delta = 1/81, which is inverse SNR and correspond to lambda2
# A for loop is used for each label due to memory issues when doing all labels at the same time
for l in range(len(labels)):
stc = mne.minimum_norm.apply_inverse_epochs(source_epochs[i],inverse_operator,
lambda2 = 1/(snr**2),
label = labels[l],
pick_ori = "vector",
return_generator=False,
method = "MNE", verbose = 0)
# Use PCA to reduce the 3 orthogonal directions to 1 principal direction with max power
# There can be ambiguity about the orientation, thus the one that
# is pointing most "normal", i.e. closest 90 degrees to the skull is used
stc_pca = [0]*len(stc)
for ep in range(n_epochs):
stc_pca[ep], pca_dir = stc[ep].project(directions="pca", src=src_inv)
# Get mean time series for the whole label
temp_label_ts = mne.extract_label_time_course(stc_pca, labels[l], src_inv, mode="mean_flip",
return_generator=False, verbose=0)
# Save to array
label_ts[:,l,:] = np.squeeze(np.array(temp_label_ts))
print("Finished estimating STC for {} out of {} ROIs".format(l+1,len(labels)))
# Free up memory
del stc
# Prepare variables
sfreq=source_epochs[i].info["sfreq"]
n_epochs = len(source_epochs[i])
# Estimate the pairwise PEC for each epoch
PEC_con_subject = np.zeros((n_epochs,n_roi,n_roi,n_freq_bands))
stcs0 = np.zeros((n_epochs,n_roi,int(sfreq)*4)) # 4s epochs
# Make list of arguments to pass into PEC_analysis using the helper func
args = []
for i2 in range(n_epochs):
args.append((i2,label_ts[i2]))
with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
for i2, PEC_result, stc_result in executor.map(PEC_analysis, args): # Function and arguments
PEC_con_subject[i2] = PEC_result
stcs0[i2] = stc_result
# Save to list
PEC_data_list[i] = PEC_con_subject # [subject](epoch,ch,ch,freq)
STCs_list[i] = stcs0 # [subject][epoch,roi,timepoint]
# Print progress
print("Finished {} out of {} subjects".format(i+1,n_subjects))
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
pickle.dump(PEC_data_list, file)
with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
pickle.dump(STCs_list, file)
# # # Load
# with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# PEC_data_list = pickle.load(file)
# # Load
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# STCs_list = pickle.load(file)
# Average over eye status
eye_status = list(source_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
pec_data = np.zeros((n_subjects,n_eye_status,n_roi,n_roi,n_freq_bands))
for i in range(n_subjects):
# Get indices for eyes open and closed
EC_index = source_epochs[i].events[:,2] == 1
EO_index = source_epochs[i].events[:,2] == 2
# Average over the indices and save to array
pec_data[i,0] = np.mean(PEC_data_list[i][EC_index], axis=0)
pec_data[i,1] = np.mean(PEC_data_list[i][EO_index], axis=0)
# Only use the lower diagonal as the diagonal should be 0 (or very small due to numerical errors)
# And it is symmetric
for f in range(n_freq_bands):
pec_data[i,0,:,:,f] = np.tril(pec_data[i,0,:,:,f],k=-1)
pec_data[i,1,:,:,f] = np.tril(pec_data[i,1,:,:,f],k=-1)
# Also save as dataframe format for feature selection
# Convert to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, pec_data.shape), indexing="ij"))) + [pec_data.ravel()])
pec_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# Change from numerical coding to actual values
eye_status = list(source_epochs[0].event_id.keys())
freq_bands_name = list(Freq_Bands.keys())
label_names = [label.name for label in labels]
index_values = [Subject_id,eye_status,label_names,label_names,freq_bands_name]
for col in range(len(index_values)):
col_name = pec_data_df.columns[col]
for shape in range(pec_data.shape[col]): # notice not dataframe but the array
pec_data_df.loc[pec_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(pec_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in pec_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
pec_data_df.insert(3, "Group_status", Group_status)
# Remove all diagonal and upper-matrix entries by removing zeros
pec_data_df = pec_data_df.iloc[pec_data_df["Value"].to_numpy().nonzero()]
# Save df
pec_data_df.to_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
# %% Sparse clustering of PEC for subtyping PTSD group
# They did it for both eye status together, so all data in one matrix
# Load PEC df
# pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_df.pkl"))
pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
# Convert to wide format
# Make function to add measurement column for indexing
def add_measurement_column(df, measurement = "Text"):
dummy_variable = [measurement]*df.shape[0]
df.insert(1, "Measurement", dummy_variable)
return df
# Make function to convert column tuple to string
def convertTupleHeader(header):
header = list(header)
str = "_".join(header)
return str
# Prepare overall dataframe
PEC_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
# Add PEC
pec_data_df = add_measurement_column(pec_data_df, "PEC")
temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
"Eye_status", "chx", "chy",
"Freq_band"], dropna=True,
values="Value").reset_index(drop=True)
# check NaN is properly dropped and subject index is correct
assert pec_data_df.shape[0] == np.prod(temp_df.shape)
test1 = pec_data_df.iloc[np.random.randint(n_subjects),:]
assert test1["Value"] ==\
temp_df[test1[1]][test1[2]][test1[3]][test1[5]][test1[6]][Subject_id.index(test1[0])]
# Fix column names
temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
PEC_df = pd.concat([PEC_df,temp_df], axis=1)
# Add group status
Groups = ["CTRL", "PTSD"]
Group_status = np.array([0]*PEC_df.shape[0]) # CTRL = 0
Group_status[np.array([i in cases for i in PEC_df["Subject_ID"]])] = 1 # PTSD = 1
PEC_df.insert(1, "Group_status", Group_status)
# Only use PTSD patient group
PEC_df2 = PEC_df.loc[PEC_df["Group_status"]==1,:]
Subject_info_cols = ["Subject_ID","Group_status"]
# Use gridsearch and permutations to estimate gap statistic and use it to
# determine number of clusters and sparsity s
# I will use 100 permutations and test 2 to 6 clusters as Zhang 2020
# Error when trying to determine Gap statistic for 1 cluster? Also in R package
max_clusters = 6
n_sparsity_feat = 20
perm_res = []
for k in range(1,max_clusters):
# Cannot permute with 1 cluster
n_clusters = k+1
x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
perm = pysparcl.cluster.permute_modified(x, k=n_clusters, verbose=True,
nvals=n_sparsity_feat, nperms=100)
perm_res.append(perm)
# Save the results
with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "wb") as file:
pickle.dump(perm_res, file)
# # Load
# with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "rb") as file:
# perm_res = pickle.load(file)
# Convert results to array
perm_res_arr = np.zeros((len(perm_res)*n_sparsity_feat,4))
for i in range(len(perm_res)):
_, gaps, sdgaps, wbounds, _ = perm_res[i].values()
for i2 in range(n_sparsity_feat):
perm_res_arr[20*i+i2,0] = i+2 # cluster size
perm_res_arr[20*i+i2,1] = gaps[i2] # gap statistic
perm_res_arr[20*i+i2,2] = sdgaps[i2] # gap statistic std
perm_res_arr[20*i+i2,3] = wbounds[i2] # sparsity feature s
# For each sparsity s, determine best k using one-standard-error criterion
# Meaning the cluster and sparsity is chosen for the smallest value of k for a fixed s
# that fulfill Gap(k) >= Gap(k+1)-std(k+1)
def one_standard_deviation_search(gaps, std):
best_gaps = np.argmax(gaps)
current_gaps = gaps[best_gaps]
current_std = std[best_gaps]
current_gaps_idx = best_gaps
while (gaps[current_gaps_idx-1] >= current_gaps - current_std):
if current_gaps_idx == 0:
break
else:
current_gaps_idx -= 1
current_gaps = gaps[current_gaps_idx]
current_std = std[current_gaps_idx]
out = current_gaps, current_std, current_gaps_idx
return out
best_ks = np.zeros((n_sparsity_feat, 2))
all_s = np.unique(perm_res_arr[:,3])
plt.figure(figsize=(12,12))
for i2 in range(n_sparsity_feat):
current_s = all_s[i2]
gaps = perm_res_arr[perm_res_arr[:,3] == current_s,1]
std = perm_res_arr[perm_res_arr[:,3] == current_s,2]
_, _, idx = one_standard_deviation_search(gaps, std)
# Save to array
best_ks[i2,0] = current_s
best_ks[i2,1] = perm_res_arr[perm_res_arr[:,3] == current_s,0][idx]
# Plot gap
plt.errorbar(perm_res_arr[perm_res_arr[:,3] == current_s,0].astype("int"),
gaps, yerr=std, capsize=5, label = np.round(current_s,3))
plt.title("Gap statistic for different fixed s")
plt.legend(loc=1)
plt.xlabel("Number of clusters")
plt.ylabel("Gap statistic")
best_k = int(scipy.stats.mode(best_ks[:,1])[0])
# Determine s using fixed k as lowest s within 1 std of max gap statistic
# According to Witten & Tibshirani, 2010
best_gaps_idx = np.argmax(perm_res_arr[perm_res_arr[:,0] == best_k,1])
best_gaps = perm_res_arr[perm_res_arr[:,0] == best_k,1][best_gaps_idx]
best_gaps_std = perm_res_arr[perm_res_arr[:,0] == best_k,2][best_gaps_idx]
one_std_crit = perm_res_arr[perm_res_arr[:,0] == best_k,1]>=best_gaps-best_gaps_std
best_s = np.array([perm_res_arr[perm_res_arr[:,0] == best_k,3][one_std_crit][0]])
# Perform clustering with k clusters
x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
sparcl = pysparcl.cluster.kmeans(x, k=best_k, wbounds=best_s)[0]
# Save the results
with open(Feature_savepath+"PEC_drop_interpol_ch_sparse_kmeans.pkl", "wb") as file:
pickle.dump(sparcl, file)
# Get overview of the features chosen and summarize feature type with countplot
nonzero_idx = sparcl["ws"].nonzero()
sparcl_features = PEC_df2.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]
# Prepare variables
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
eye_status = list(source_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
sparcl_feat = []
sparcl_feat_counts = []
for e in range(n_eye_status):
ee = eye_status[e]
for f in range(n_freq_bands):
ff = list(Freq_Bands.keys())[f]
temp_feat = sparcl_features[sparcl_features.str.contains(("_"+ee))]
temp_feat = temp_feat[temp_feat.str.contains(("_"+ff))]
# Save to list
sparcl_feat.append(temp_feat)
sparcl_feat_counts.append(["{}_{}".format(ee,ff), len(temp_feat)])
# Convert the list to dataframe to use in countplot
sparcl_feat_counts_df = pd.DataFrame(columns=["Eye_status", "Freq_band"])
for i in range(len(sparcl_feat_counts)):
# If this feature type does not exist, then skip it
if sparcl_feat_counts[i][1] == 0:
continue
ee, ff = sparcl_feat_counts[i][0].split("_")
counts = sparcl_feat_counts[i][1]
temp_df = pd.DataFrame({"Eye_status":np.repeat(ee,counts),
"Freq_band":np.repeat(ff,counts)})
sparcl_feat_counts_df = sparcl_feat_counts_df.append(temp_df, ignore_index=True)
# Fix Freq_band categorical order
cat_type = pd.CategoricalDtype(categories=list(Freq_Bands.keys()), ordered=True)
sparcl_feat_counts_df["Freq_band"] = sparcl_feat_counts_df["Freq_band"].astype(cat_type)
plt.figure(figsize=(8,8))
g = sns.countplot(y="Freq_band", hue="Eye_status", data=sparcl_feat_counts_df)
plt.title("PEC Sparse K-means features")
plt.xlabel("Number of non-zero weights")
plt.ylabel("Frequency Band")
# %% Functional connectivity in source space
# MNE implementation of PLV and wPLI is phase across trials(epochs), e.g. for ERPs
# I'll use my own manually implemented PLV and wPLI across time and then average across epochs
# Notice that the new MNE-connectivity library now also takes phase across time
sfreq = final_epochs[0].info["sfreq"]
# error when using less than 5 cycles for spectrum estimation
# 1Hz too low with epoch length of 4, thus I changed the fmin to 1.25 for delta
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
freq_centers = np.array([2.5,6,10.5,21.5,40])
# Convert to tuples for the mne function
fmin=tuple([list(Freq_Bands.values())[f][0] for f in range(len(Freq_Bands))])
fmax=tuple([list(Freq_Bands.values())[f][1] for f in range(len(Freq_Bands))])
# Make linspace array for morlet waves
freq_centers = np.arange(fmin[0],fmax[-1]+0.25,0.25)
# Prepare Morlets
morlets = mne.time_frequency.tfr.morlet(sfreq,freq_centers,n_cycles=3)
# Make freqs array for indexing
freqs0 = [0]*n_freq_bands
for f in range(n_freq_bands):
freqs0[f] = freq_centers[(freq_centers>=fmin[f]) & (freq_centers<=fmax[f])]
# The in-built connectivity function gives an (n_channel, n_channel, freqs output
# For loop over subject ID and eye status is implemented
n_subjects = len(Subject_id)
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
# Load source labels
with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
labels = pickle.load(file)
label_names = [label.name for label in labels]
n_sources = len(label_names)
# Connectivity methods
Loading
Loading full blame…