Skip to content
Snippets Groups Projects
FeatureEstimation.py 125 KiB
Newer Older
  • Learn to ignore specific revisions
  • glia's avatar
    glia committed
    1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    # Add group status
    Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    microstate_entropy_df.insert(2, "Group_status", Group_status)
    # Add dummy variable for re-using plot code
    dummy_variable = ["Entropy"]*len(Group_status)
    microstate_entropy_df.insert(3, "Measurement", dummy_variable)
    
    # Save df
    microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
    
    # %% Long-range temporal correlations (LRTC)
    """
    See Hardstone et al, 2012
    Hurst exponent estimation steps:
        1. Preprocess
        2. Band-pass filter for frequency band of interest
        3. Hilbert transform to obtain amplitude envelope
        4. Perform DFA
            4.1 Compute cumulative sum of time series to create signal profile
            4.2 Define set of window sizes (see below)
            4.3 Remove the linear trend using least-squares for each window
            4.4 Calculate standard deviation for each window and take the mean
            4.5 Plot fluctuation function (Standard deviation) as function
                for all window sizes, on double logarithmic scale
            4.6 The DFA exponent alpha correspond to Hurst exponent
                f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
    
    If 0 < alpha < 0.5: The process exhibits anti-correlations
    If 0.5 < alpha < 1: The process exhibits positive correlations
    If alpha = 0.5: The process is indistinguishable from a random process
    If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
    
    Window sizes should be equally spaced on a logarithmic scale
    Sizes should be at least 4 samples and up to 10% of total signal length
    Filters can influence neighboring samples, thus filters should be tested
    on white noise to estimate window sizes that are unaffected by filters
    
    filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
    
    """
    # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
    thresholds = [7,7,7,6.5,6.5]
    # And their corresponding log step sizes
    with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
        log_win_sizes = pickle.load(filehandle)
    
    # Variables for the the different conditions
    # Sampling frequency
    sfreq = final_epochs[0].info["sfreq"]
    # Channels
    ch_names = final_epochs[0].info["ch_names"]
    n_channels = len(ch_names)
    # Frequency
    Freq_Bands = {"delta": [1.25, 4.0],
                  "theta": [4.0, 8.0],
                  "alpha": [8.0, 13.0],
                  "beta": [13.0, 30.0],
                  "gamma": [30.0, 49.0]}
    n_freq_bands = len(Freq_Bands)
    # Eye status
    eye_status = list(final_epochs[0].event_id.keys())
    n_eye_status = len(eye_status)
    
    ### Estimating Hurst exponent for the data
    # The data should be re-referenced to common average (Already done)
    
    # Data are transformed to numpy arrays
    # Then divided into EO and EC and further into each of the 5 trials
    # So DFA is estimated for each trial separately, which was concluded from simulations
    gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
    n_trials = 5
    
    H_data = []
    for i in range(n_subjects):
        # Transform data to correct shape
        temp_arr = final_epochs[i].get_data() # get data
        arr_shape = temp_arr.shape # get shape
        temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
        temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
        # Get indices for eyes open and closed
        EC_index = final_epochs[i].events[:,2] == 1
        EO_index = final_epochs[i].events[:,2] == 2
        # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
        EC_index = np.repeat(EC_index,4*sfreq)
        EO_index = np.repeat(EO_index,4*sfreq)
        # Divide into eye status
        EC_data = temp_arr[EC_index]
        EO_data = temp_arr[EO_index]
        # Divide into trials
        EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
        EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
        
        EC_trial_data = []
        EO_trial_data = []
        for t in range(n_trials):
            EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
            EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
            
        # Save data
        H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
    
    # Calculate H for each subject, eye status, trial, freq and channel
    H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
    w_len = [len(ele) for ele in log_win_sizes]
    DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
    DFA_arr[:] = np.nan
    
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print("Started",c_time1)
    
    # Nolds are already using all cores so multiprocessing with make it slower
    # Warning occurs when R2 is estimated during detrending - but R2 is not used
    warnings.simplefilter("ignore")
    for i in range(n_subjects):
        # Pre-allocate memory
        DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
        DFA_temp[:] = np.nan
        H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
        for e in range(n_eye_status):
            for trial in range(n_trials):
                for c in range(n_channels):
                    # Get the data
                    signal = H_data[i][e][trial][:,c]
                    
                    counter = 0 # prepare counter
                    for fmin, fmax in Freq_Bands.values():
                        # Filter for each freq band
                        signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
                                                      l_freq=fmin, h_freq=fmax)
                        # Hilbert transform
                        analytic_signal = scipy.signal.hilbert(signal_filtered)
                        # Get Amplitude envelope
                        # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
                        ampltude_envelope = np.abs(analytic_signal)
                        # Perform DFA using predefined window sizes from simulation
                        a, dfa_data = nolds.dfa(ampltude_envelope,
                                                nvals=np.exp(log_win_sizes[counter]).astype("int"),
                                                debug_data=True)
                        # Save DFA results
                        DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
                        H_temp[e,trial,c,counter] = a
                        # Update counter
                        counter += 1
    
        # Print run status
        print("Finished {} out of {}".format(i+1,n_subjects))
        # Save the results
        H_arr[i] = H_temp
        DFA_arr[i] = DFA_temp
    
    warnings.simplefilter("default")
    
    # Get current time
    c_time2 = time.localtime()
    c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
    print("Started", c_time1, "\nCurrent Time",c_time2)
    
    # Save the DFA analysis data 
    np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
    np.save(Feature_savepath+"H_arr.npy", H_arr)
    
    # Load
    DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
    H_arr = np.load(Feature_savepath+"H_arr.npy")
    
    # Average the Hurst Exponent across trials
    H_arr = np.mean(H_arr, axis=2)
    
    # Convert to Pandas dataframe (Hurst exponent)
    # The dimensions will each be a column with numbers and the last column will be the actual values
    arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
    H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
    # Change from numerical coding to actual values
    eye_status = list(final_epochs[0].event_id.keys())
    ch_name = final_epochs[0].info["ch_names"]
    
    index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
    for col in range(len(index_values)):
        col_name = H_data_df.columns[col]
        for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
            H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
            = index_values[col][shape]
    
    # Add group status
    Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    H_data_df.insert(2, "Group_status", Group_status)
    
    # Fix Freq_band categorical order
    H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
                cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
    
    # Global Hurst exponent
    H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
    # Add group status (cannot use group_by as each subject only have 1 group, not both)
    Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
    Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    H_data_df_global.insert(2, "Group_status", Group_status)
    # Add dummy variable for re-using plot code
    dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
    H_data_df_global.insert(3, "Measurement", dummy_variable )
    
    # Save the data
    H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
    H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
    
    # %% Source localization of sensor data
    # Using non-interpolated channels
    # Even interpolated channels during preprocessing and visual inspection
    # are dropped
    
    # Prepare epochs for estimation of source connectivity
    source_epochs = [0]*n_subjects
    for i in range(n_subjects):
        source_epochs[i] = final_epochs[i].copy()
    
    ### Make forward solutions
    # A forward solution is first made for all individuals with no dropped channels
    # Afterwards individual forward solutions are made for subjects with bad
    # channels that were interpolated in preprocessing and these are dropped
    # First forward operator is computed using a template MRI for each dataset
    fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
    subjects_dir = os.path.dirname(fs_dir)
    trans = "fsaverage"
    src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
    bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
    
    # Read the template sourcespace
    sourcespace = mne.read_source_spaces(src)
    
    temp_idx = 0 # Index with subject that had no bad channels
    subject_eeg = source_epochs[temp_idx].copy()
    subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
    # Make forward solution
    fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
                                bem=bem, eeg=True, mindist=5.0, n_jobs=1)
    # Save forward operator
    fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
    mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
    
    # A specific forward solution is also made for each subject with bad channels
    with open("./Preprocessing/bad_ch.pkl", "rb") as file:
       bad_ch = pickle.load(file)
    
    All_bad_ch = bad_ch
    All_drop_epochs = dropped_epochs_df
    All_dropped_ch = []
    
    Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
    Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
    # For each subject with bad channels, drop the channels and make forward operator
    for n in range(len(Bad_ch_subjects)):
        Subject = Bad_ch_subjects.iloc[n]
        try:
            Subject_idx = Subject_id.index(Subject)
            # Get unique bad channels
            Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
            Bad_ch1 = []
            for i2 in range(len(Bad_ch0)):
                if type(Bad_ch0[i2]) == list:
                    for i3 in range(len(Bad_ch0[i2])):
                        Bad_ch1.append(Bad_ch0[i2][i3])
                elif type(Bad_ch0[i2]) == str:
                    Bad_ch1.append(Bad_ch0[i2])
            Bad_ch1 = np.unique(Bad_ch1)
            # Drop the bad channels
            source_epochs[Subject_idx].drop_channels(Bad_ch1)
            # Save the overview of dropped channels
            All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
            # Make forward operator
            subject_eeg = source_epochs[Subject_idx].copy()
            subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
            # Make forward solution
            fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
                                        bem=bem, eeg=True, mindist=5.0, n_jobs=1)
            # Save forward operator
            fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
            mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
        except:
            print(Subject,"was already dropped")
    
    with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
        pickle.dump(All_dropped_ch, filehandle)
    
    
    # %% Load forward operators
    # Re-use for all subjects without dropped channels
    fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
    fwd = mne.read_forward_solution(fname_fwd)
    
    fwd_list = [fwd]*n_subjects
    
    # Use specific forward solutions for subjects with dropped channels
    with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
       All_dropped_ch = pickle.load(file)
    
    for i in range(len(All_dropped_ch)):
        Subject = All_dropped_ch[i][0]
        Subject_idx = All_dropped_ch[i][1]
        fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
        fwd = mne.read_forward_solution(fname_fwd)
        fwd_list[Subject_idx] = fwd
    
    # Check the correct number of channels are present in fwd
    random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
    assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
    
    # %% Make parcellation
    # After mapping to source space, I end up with 20484 vertices
    # but I wanted to map to fewer sources and not many more
    # Thus I need to perform parcellation
    # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
    labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
                                        subjects_dir=subjects_dir)
    labels_aparc = labels_aparc[:-2] # remove unknowns
    
    labels_aparc_names = [label.name for label in labels_aparc]
    
    # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
    # Making fuction to take subset of a label
    def label_subset(label, subset, name="ROI_name"):
        label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
                             label.values[subset], label.hemi,
                             name = "{}-{}".format(name,label.hemi),
                             subject = label.subject, color = None)
        return label_subset
    
    ### Visual area 1 (V1 and somatosensory cortex BA1-3)
    label_filenames = ["lh.V1.label", "rh.V1.label",
                       "lh.BA1.label", "rh.BA1.label",
                       "lh.BA2.label", "rh.BA2.label",
                       "lh.BA3a.label", "rh.BA3a.label",
                       "lh.BA3b.label", "rh.BA3b.label"]
    labels0 = [0]*len(label_filenames)
    for i, filename in enumerate(label_filenames):
        labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
    # Add V1 to final label variable
    labels = labels0[:2]
    # Rename to remove redundant hemi information
    labels[0].name = "V1-{}".format(labels[0].hemi)
    labels[1].name = "V1-{}".format(labels[1].hemi)
    # Assign a color
    labels[0].color = matplotlib.colors.to_rgba("salmon")
    labels[1].color = matplotlib.colors.to_rgba("salmon")
    # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
    SMC_labels = labels0[2:]
    for hem in range(2):
        SMC_p1 = SMC_labels[hem]
        for i in range(1,len(SMC_labels)//2):
            SMC_p2 = SMC_labels[hem+2*i]
            p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
            SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
            SMC_p1 = SMC_p1.__add__(SMC_p21)
        SMC_p1.name = SMC_p21.name
        # Assign a color
        SMC_p1.color = matplotlib.colors.to_rgba("orange")
        labels.append(SMC_p1)
    
    ### Inferior frontal junction
    # Located at junction between inferior frontal and inferior precentral sulcus
    label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    
    pos1 = temp_labels[0].pos
    pos2 = temp_labels[2].pos
    distm = scipy.spatial.distance.cdist(pos1,pos2)
    # Find the closest points between the 2 ROIs
    l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
    l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
    
    IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
    IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
    # Combine the 2 parts
    IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
    IFJ_label.name = IFJ_label_p1.name
    # Assign a color
    IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
    # Append to final list
    labels.append(IFJ_label)
    
    # Do the same for the right hemisphere
    pos1 = temp_labels[1].pos
    pos2 = temp_labels[3].pos
    distm = scipy.spatial.distance.cdist(pos1,pos2)
    # Find the closest points between the 2 ROIs
    l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
    l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
    IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
    IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
    # Combine the 2 parts
    IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
    IFJ_label.name = IFJ_label_p1.name
    # Assign a color
    IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
    # Append to final list
    labels.append(IFJ_label)
    
    ### Intraparietal sulcus
    label_aparc_names0 = ["S_intrapariet_and_P_trans"]
    labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
    for i in range(len(labels_aparc_idx)):
        labels.append(labels_aparc[labels_aparc_idx[i]].copy())
        labels[-1].name = "IPS-{}".format(labels[-1].hemi)
    
    ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
    label_aparc_names0 = ["G_front_middle","G_precentral"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    
    # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
    temp_label0 = temp_labels[0]
    G_fm_y = temp_label0.pos[:,1]
    thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
    idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
    FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
    # Take 10% closest for precentral gyrus (most anterior)
    temp_label0 = temp_labels[2]
    # I cannot only use y (anterior/posterior) but also need to restrict z-position
    G_pre_cen_z = temp_label0.pos[:,2]
    thres_G_pre_cen_z = 0.04 # visually inspected threshold
    G_pre_cen_y = temp_label0.pos[:,1]
    thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
    idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
    FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
    # Combine the 2 parts
    FEF_label = FEF_label_p1.__add__(FEF_label_p2)
    FEF_label.name = FEF_label_p1.name
    # Assign a color
    FEF_label.color = matplotlib.colors.to_rgba("aqua")
    # Append to final list
    labels.append(FEF_label)
    
    # Do the same for the right hemisphere
    temp_label0 = temp_labels[1]
    G_fm_y = temp_label0.pos[:,1]
    thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
    idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
    FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
    
    temp_label0 = temp_labels[3]
    G_pre_cen_z = temp_label0.pos[:,2]
    thres_G_pre_cen_z = 0.04 # visually inspected threshold
    G_pre_cen_y = temp_label0.pos[:,1]
    thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
    idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
    FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
    # Combine the 2 parts
    FEF_label = FEF_label_p1.__add__(FEF_label_p2)
    FEF_label.name = FEF_label_p1.name
    # Assign a color
    FEF_label.color = matplotlib.colors.to_rgba("aqua")
    # Append to final list
    labels.append(FEF_label)
    
    ### Supplementary eye fields
    # Located at caudal end of frontal gyrus and upper part of paracentral sulcus
    label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    
    pos1 = temp_labels[0].pos
    pos2 = temp_labels[2].pos
    distm = scipy.spatial.distance.cdist(pos1,pos2)
    # Find the closest points between the 2 ROIs
    l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
    l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
    # Notice that superior frontal gyrus is around 4 times bigger than paracentral
    len(l1_idx)/pos1.shape[0]
    len(l2_idx)/pos2.shape[0]
    # Only use upper part
    z_threshold = 0.06 # visually inspected
    l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
    l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
    
    SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
    SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
    # Combine the 2 parts
    SEF_label = SEF_label_p1.__add__(SEF_label_p2)
    SEF_label.name = SEF_label_p1.name
    # Assign a color
    SEF_label.color = matplotlib.colors.to_rgba("royalblue")
    # Append to final list
    labels.append(SEF_label)
    
    # Do the same for the right hemisphere
    pos1 = temp_labels[1].pos
    pos2 = temp_labels[3].pos
    distm = scipy.spatial.distance.cdist(pos1,pos2)
    # Find the closest points between the 2 ROIs
    l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
    l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
    # Notice that superior frontal gyrus is around 4 times bigger than paracentral
    len(l1_idx)/pos1.shape[0]
    len(l2_idx)/pos2.shape[0]
    # Only use upper part
    z_threshold = 0.06 # visually inspected
    l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
    l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
    
    SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
    SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
    # Combine the 2 parts
    SEF_label = SEF_label_p1.__add__(SEF_label_p2)
    SEF_label.name = SEF_label_p1.name
    # Assign a color
    SEF_label.color = matplotlib.colors.to_rgba("royalblue")
    # Append to final list
    labels.append(SEF_label)
    
    ### Posterior cingulate cortex
    label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    labels0 = []
    for hem in range(2):
        PCC_p1 = temp_labels[hem]
        for i in range(1,len(temp_labels)//2):
            PCC_p2 = temp_labels[hem+2*i]
            PCC_p1 = PCC_p1.__add__(PCC_p2)
        PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
        labels0.append(PCC_p1)
    # Combine the 2 hemisphere in 1 label
    labels.append(labels0[0].__add__(labels0[1]))
    
    ### Medial prefrontal cortex
    # From their schematic it looks like rostral 1/4 of superior frontal gyrus
    label_aparc_names0 = ["G_front_sup"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
            temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
            temp_labels.append(temp_labels0)
    # Combine the 2 hemisphere in 1 label
    labels.append(temp_labels[0].__add__(temp_labels[1]))
    
    ### Angular gyrus
    label_aparc_names0 = ["G_pariet_inf-Angular"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels.name = "ANG-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    ### Posterior middle frontal gyrus
    label_aparc_names0 = ["G_front_middle"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
            temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    ### Inferior parietal lobule
    # From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
    label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    # Split angular in 2 and get rostral part
    temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
    temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
    # Split supramarginal in 2 and get posterior part
    temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
    temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]
    
    for hem in range(2):
        PCC_p1 = temp_labels[hem]
        for i in range(1,len(temp_labels)//2):
            PCC_p2 = temp_labels[hem+2*i]
            PCC_p1 = PCC_p1.__add__(PCC_p2)
        PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
        labels.append(PCC_p1)
    
    ### Orbital gyrus
    # From their figure it seems to correspond to orbital part of inferior frontal gyrus
    label_aparc_names0 = ["G_front_inf-Orbital"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels.name = "ORB-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    ### Middle temporal gyrus
    # From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
    label_aparc_names0 = ["G_temporal_middle"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
            temp_labels.name = "MTG-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    ### Anterior middle frontal gyrus
    label_aparc_names0 = ["G_front_middle"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
            temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    ### Insula
    label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    for hem in range(2):
        PCC_p1 = temp_labels[hem]
        for i in range(1,len(temp_labels)//2):
            PCC_p2 = temp_labels[hem+2*i]
            PCC_p1 = PCC_p1.__add__(PCC_p2)
        PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
        labels.append(PCC_p1)
    
    ### (Dorsal) Anterior Cingulate Cortex
    label_aparc_names0 = ["G_and_S_cingul-Ant"]
    temp_labels = []
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
            temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
    # Combine the 2 hemisphere in 1 label
    labels.append(temp_labels[0].__add__(temp_labels[1]))
    
    ### Supramarginal Gyrus
    label_aparc_names0 = ["G_pariet_inf-Supramar"]
    for i in range(len(label_aparc_names0)):
        labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
        for i2 in range(len(labels_aparc_idx)):
            temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
            temp_labels.name = "SUP-{}".format(temp_labels.hemi)
            labels.append(temp_labels)
    
    print("{} ROIs have been defined".format(len(labels)))
    
    # # Visualize positions
    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection="3d")
    # for i in range(0,3):
    #     temp_pos = temp_labels[i].pos
    #     ax.scatter(temp_pos[:,0],temp_pos[:,1],temp_pos[:,2], marker="o", alpha=0.1)
    # # Add to plot
    # ax.scatter(labels[-1].pos[:,0],labels[-1].pos[:,1],labels[-1].pos[:,2], marker="o")
    
    # # Visualize the labels
    # # temp_l = labels_aparc[labels_aparc_idx[0]]
    # temp_l = labels[-2]
    # l_stc = stc[100].in_label(temp_l)
    # l_stc.vertices
    
    # l_stc.plot(**surfer_kwargs)
    
    # Save the annotation file
    with open("custom_aparc2009_Li_et_al_2022.pkl", "wb") as file:
        pickle.dump(labels, file)
    
    # %% Calculate orthogonalized power envelope connectivity in source space
    # In non-interpolated channels
    # Updated 22/1 - 2021 to use delta = 1/81 and assumption
    # about non-correlated and equal variance noise covariance matrix for channels
    
    # Load
    with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
        labels = pickle.load(file)
    label_names = [label.name for label in labels]
    
    # Define function to estimate PEC
    def PEC_estimation(x, freq_bands, sfreq=200):
        """
        This function takes a source timeseries signal x and performs:
            1. Bandpass filtering
            2. Hilbert transform to yield analytical signal
            3. Compute all to all connectivity by iteratively computing for each pair
                a. Orthogonalization
                b. Computing power envelopes by squaring the signals |x|^2
                c. Log-transform to enhance normality
                d. Pearson's correlation between each pair
                e. Fisher's r-to-z transform to enhance normality
        The code has been optimized by inspiration from MNE-Python's function:
        mne.connectivity.enelope_correlation.
        
        In MNE-python version < 0.22 there was a bug, but after the fix in 0.22
        the mne function is equivalent to my implementation, although they don't
        use epsilon but gives same result with a RuntimeWarning about log(0)
        
        IMPORTANT NOTE:
            Filtering introduce artifacts for first and last timepoint
        The values are very low, more than 1e-12 less than the others
        If they are not removed, then they will heavily influence Pearson's
        correlation as it is outlier sensitive
        
        Inputs:
            x - The signal in source space as np.array with shape (ROIs,Timepoints)
            freq_bands - The frequency bands of interest as a dictionary e.g.
                         {"alpha": [8.0, 13.0], "beta": [13.0, 30.0]}
            sfreq - The sampling frequency in Hertz
        
        Output:
            The pairwise connectivity matrix
        """
        n_roi, n_timepoints = x.shape
        n_freq_bands = len(freq_bands)
        
        epsilon = 1e-100 # small value to prevent log(0) errors
        
        # Filter the signal in the different freq bands
        PEC_con0 = np.zeros((n_roi,n_roi,n_freq_bands))
        for fname, frange in freq_bands.items():
            fmin, fmax = [float(interval) for interval in frange]
            signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
                                              fir_design="firwin", verbose=0)
            # Filtering on finite signals will yield very low values for first
            # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
            # Outlier sensitive methods, like Pearson's correlation, is therefore
            # heavily affected and this systematic error is removed by removing
            # the first and last timepoint
            signal_filtered = signal_filtered[:,1:-1]
            
            # Hilbert transform
            analytic_signal = scipy.signal.hilbert(signal_filtered)
            # I will use x and y to keep track of orthogonalization
            x0 = analytic_signal
            # Get power envelope
            x0_mag = np.abs(x0)
            # Get scaled conjugate used for orthogonalization estimation
            x0_conj_scaled = x0.conj()
            x0_conj_scaled /= x0_mag
            # Take square power envelope
            PEx = np.square(x0_mag)
            # Take log transform
            lnPEx = np.log(PEx+epsilon)
            # Remove mean for Pearson correlation calculation
            lnPEx_nomean = lnPEx - np.mean(lnPEx, axis=-1, keepdims=True) # normalize each roi timeseries
            # Get std for Pearson correlation calculation
            lnPEx_std = np.std(lnPEx, axis=-1)
            lnPEx_std[lnPEx_std == 0] = 1 # Prevent std = 0 problems
            # Prepare con matrix
            con0 = np.zeros((n_roi,n_roi))
            for roi_r, y0 in enumerate(x0): # for each y0
                # Calculate orthogonalized signal y with respect to x for all x
                # Using y_ort = imag(y*x_conj/|x|)
                # I checked the formula in temp_v3 and it works as intended
                # I want to orthogonalize element wise for each timepoint
                y0_ort = (y0*x0_conj_scaled).imag
                # Here y0_ort.shape = (n_roi, n_timepoints)
                # So y is current roi and the first axis gives each x it is orthogonalized to
                # Take the abs to get power envelope
                y0_ort = np.abs(y0_ort)
                # Prevent log(0) error when calculating y_ort on y
                y0_ort[roi_r] = 1. # this will be 0 zero after mean subtraction
                # Take square power envelope
                PEy = np.square(y0_ort) # squared power envelope
                # Take log transform
                lnPEy = np.log(PEy+epsilon)
                # Remove mean for pearson correlation calculation
                lnPEy_nomean = lnPEy - np.mean(lnPEy, axis=-1, keepdims=True)
                # Get std for Pearson correlation calculation
                lnPEy_std = np.std(lnPEy, axis=-1)
                lnPEy_std[lnPEy_std == 0] = 1.
                # Pearson correlation is expectation of X_nomean * Y_nomean for each time-series divided with standard deviations
                PEC = np.mean(lnPEx_nomean*lnPEy_nomean, axis=-1)
                PEC /= lnPEx_std
                PEC /= lnPEy_std
                con0[roi_r] = PEC
            # The con0 connectivity matrix should be read as correlation between
            # orthogonalized y (row number) and x (column number)
            # It is not symmetrical, as cor(roi2_ort, roi1) is not cor(roi1_ort, roi2)
            # To make it symmetrical the average of the absolute correlation
            # of the 2 possibilities for each pair are taken
            con0 = np.abs(con0)
            con0 = (con0.T+con0)/2.
            # Fisher's z transform - which is equivalent to arctanh
            con0 = np.arctanh(con0)
            # The diagonal is not 0 as I wanted to avoid numerical errors with log(0)
            # and used a small epsilon value. Thus the diagonal is explicitly set to 0
            
            # Save to array
            PEC_con0[:,:,list(freq_bands.keys()).index(fname)] = con0
        return PEC_con0
    
    # Prepare variables
    Freq_Bands = {"delta": [1.25, 4.0],
                  "theta": [4.0, 8.0],
                  "alpha": [8.0, 13.0],
                  "beta": [13.0, 30.0],
                  "gamma": [30.0, 49.0]}
    n_freq_bands = len(Freq_Bands)
    n_roi = len(labels)
    
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print(c_time1)
    
    # PEC analysis
    PEC_data_list = [0]*n_subjects
    STCs_list = [0]*n_subjects
    
    # Using inverse operator as generator interferes with concurrent processes
    # If I run it for multiple subjects I run out of ram
    # Thus concurrent processes are used inside the for loop
    def PEC_analysis(input_args): # iterable epoch number and corresponding ts
        i2, ts = input_args
        # Estimate PEC
        PEC_con0 = PEC_estimation(ts, Freq_Bands, sfreq)
        print("Finished {} out of {} epochs".format(i2+1,n_epochs))
        return i2, PEC_con0, ts
    
    for i in range(n_subjects):
        n_epochs, n_ch, n_timepoints = source_epochs[i].get_data().shape
        # Use different forward solutions depending on number of channels
        cur_subject_id = Subject_id[i]
        fwd = fwds[i]
        
        # Using assumption about equal variance and no correlations I make a diagonal matrix
        # Using the default option for 0.2µV std for EEG data
        noise_cov = mne.make_ad_hoc_cov(source_epochs[i].info, None)
        
        # Make inverse operator
        # Using default depth parameter = 0.8 and free orientation (loose = 1)
        inverse_operator = mne.minimum_norm.make_inverse_operator(source_epochs[i].info,
                                                                  fwd, noise_cov,
                                                                  loose = 1, depth = 0.8,
                                                                  verbose = 0)
        src_inv = inverse_operator["src"]
        # Compute inverse solution and retrieve time series for each label
        # Preallocate memory
        label_ts = np.full((n_epochs,len(labels),n_timepoints),np.nan)
        # Define regularization
        snr = 9 # Zhang et al, 2020 used delta = 1/81, which is inverse SNR and correspond to lambda2
        # A for loop is used for each label due to memory issues when doing all labels at the same time
        for l in range(len(labels)):
            stc = mne.minimum_norm.apply_inverse_epochs(source_epochs[i],inverse_operator,
                                                        lambda2 = 1/(snr**2),
                                                        label = labels[l],
                                                        pick_ori = "vector",
                                                        return_generator=False,
                                                        method = "MNE", verbose = 0)
            # Use PCA to reduce the 3 orthogonal directions to 1 principal direction with max power
            # There can be ambiguity about the orientation, thus the one that
            # is pointing most "normal", i.e. closest 90 degrees to the skull is used
            stc_pca = [0]*len(stc)
            for ep in range(n_epochs):
                stc_pca[ep], pca_dir = stc[ep].project(directions="pca", src=src_inv)
            # Get mean time series for the whole label
            temp_label_ts = mne.extract_label_time_course(stc_pca, labels[l], src_inv, mode="mean_flip",
                                             return_generator=False, verbose=0)
            # Save to array
            label_ts[:,l,:] = np.squeeze(np.array(temp_label_ts))
            print("Finished estimating STC for {} out of {} ROIs".format(l+1,len(labels)))
        
        # Free up memory
        del stc
    
        # Prepare variables
        sfreq=source_epochs[i].info["sfreq"]
        n_epochs = len(source_epochs[i])
        # Estimate the pairwise PEC for each epoch
        PEC_con_subject = np.zeros((n_epochs,n_roi,n_roi,n_freq_bands))
        stcs0 = np.zeros((n_epochs,n_roi,int(sfreq)*4)) # 4s epochs
        # Make list of arguments to pass into PEC_analysis using the helper func
        args = []
        for i2 in range(n_epochs):
            args.append((i2,label_ts[i2]))
        
        with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
            for i2, PEC_result, stc_result in executor.map(PEC_analysis, args): # Function and arguments
                PEC_con_subject[i2] = PEC_result
                stcs0[i2] = stc_result
        
        # Save to list
        PEC_data_list[i] = PEC_con_subject # [subject](epoch,ch,ch,freq)
        STCs_list[i] = stcs0 # [subject][epoch,roi,timepoint]
        
        # Print progress
        print("Finished {} out of {} subjects".format(i+1,n_subjects))
    
    # Get current time
    c_time2 = time.localtime()
    c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
    print("Started", c_time1, "\nFinished",c_time2)
    
    with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
        pickle.dump(PEC_data_list, file)
    with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
        pickle.dump(STCs_list, file)
    
    # # # Load
    # with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
    #     PEC_data_list = pickle.load(file)
    
    # # Load
    # with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
    #     STCs_list = pickle.load(file)
    
    # Average over eye status
    eye_status = list(source_epochs[0].event_id.keys())
    n_eye_status = len(eye_status)
    pec_data = np.zeros((n_subjects,n_eye_status,n_roi,n_roi,n_freq_bands))
    for i in range(n_subjects):
        # Get indices for eyes open and closed
        EC_index = source_epochs[i].events[:,2] == 1
        EO_index = source_epochs[i].events[:,2] == 2
        # Average over the indices and save to array
        pec_data[i,0] = np.mean(PEC_data_list[i][EC_index], axis=0)
        pec_data[i,1] = np.mean(PEC_data_list[i][EO_index], axis=0)
        # Only use the lower diagonal as the diagonal should be 0 (or very small due to numerical errors)
        # And it is symmetric
        for f in range(n_freq_bands):
            pec_data[i,0,:,:,f] = np.tril(pec_data[i,0,:,:,f],k=-1)
            pec_data[i,1,:,:,f] = np.tril(pec_data[i,1,:,:,f],k=-1)
    
    # Also save as dataframe format for feature selection
    # Convert to Pandas dataframe
    # The dimensions will each be a column with numbers and the last column will be the actual values
    arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, pec_data.shape), indexing="ij"))) + [pec_data.ravel()])
    pec_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
    # Change from numerical coding to actual values
    eye_status = list(source_epochs[0].event_id.keys())
    freq_bands_name = list(Freq_Bands.keys())
    label_names = [label.name for label in labels]
    
    index_values = [Subject_id,eye_status,label_names,label_names,freq_bands_name]
    for col in range(len(index_values)):
        col_name = pec_data_df.columns[col]
        for shape in range(pec_data.shape[col]): # notice not dataframe but the array
            pec_data_df.loc[pec_data_df.iloc[:,col] == shape,col_name]\
            = index_values[col][shape]
    
    # Add group status
    Group_status = np.array(["CTRL"]*len(pec_data_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in pec_data_df["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    pec_data_df.insert(3, "Group_status", Group_status)
    
    # Remove all diagonal and upper-matrix entries by removing zeros
    pec_data_df = pec_data_df.iloc[pec_data_df["Value"].to_numpy().nonzero()]
    
    # Save df
    pec_data_df.to_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
    
    # %% Sparse clustering of PEC for subtyping PTSD group
    # They did it for both eye status together, so all data in one matrix
    # Load PEC df
    # pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_df.pkl"))
    pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
    
    # Convert to wide format
    # Make function to add measurement column for indexing
    def add_measurement_column(df, measurement = "Text"):
        dummy_variable = [measurement]*df.shape[0]
        df.insert(1, "Measurement", dummy_variable)
        return df
    # Make function to convert column tuple to string
    def convertTupleHeader(header):
        header = list(header)
        str = "_".join(header)
        return str
    
    # Prepare overall dataframe
    PEC_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
    # Add PEC
    pec_data_df = add_measurement_column(pec_data_df, "PEC")
    temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
                                        "Eye_status", "chx", "chy",
                                        "Freq_band"], dropna=True,
                                   values="Value").reset_index(drop=True)
    # check NaN is properly dropped and subject index is correct