Skip to content
Snippets Groups Projects
MachineLearning.py 121 KiB
Newer Older
  • Learn to ignore specific revisions
  • glia's avatar
    glia committed
    2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
            X_train = train_df_standard.copy().drop(Subject_info_cols, axis=1)
            y_train = train_df_standard[Target]
            # Get test data
            X_test = test_df_standard.copy().drop(Subject_info_cols, axis=1)
            y_test = test_df_standard[Target]
            
            # Part 2 with second mRMR and classifiers in loop
            k_fold = 10
            skf2 = StratifiedKFold(n_splits=k_fold, shuffle=True, random_state=(rep+1)*123) # using 10% equals around 21 test subjects
            # I am also using converting it to an iterable list instad of the generator to promote reuse
            Inner_CV = []
            for train_index2, test_index2 in skf2.split(train_df,study_group_status.iloc[train_index]):
                Inner_CV.append([train_index2,test_index2])
            
            # Prepare initial filtering of feature types to alleviate imbalance in number of features
            # Use a variable that is optimized using inner CV
            n_feat_mRMR1 = [20,30,40,50]
            
            # Max features from mRMR for each eye status
            max_mRMR_features = n_feat_mRMR1[-1]
            
            eye_status = ["Eyes Closed", "Eyes Open"]
            n_eye_status = len(eye_status)
            
            feat_counter = []
            # Perform mRMR for each feature type followed by RFE SVM/SFS LogReg/RF
            Ind_feat_clf00 = []
            for fset in range(len(EEG_features_name_list)):
                temp_feat = EEG_features_name_list[fset]
                other_feats = EEG_features_name_list[:fset]+EEG_features_name_list[fset+1:]
                other_feats = [item for sublist in other_feats for item in sublist] # make the list flatten
                # Retrieve the dataset for each feature
                col_idx = np.zeros(len(X_train.columns), dtype=bool)
                for fsub in range(len(temp_feat)):
                    temp_feat0 = temp_feat[fsub]
                    col_idx0 = X_train.columns.str.contains(temp_feat0+"_")
                    col_idx = np.logical_or(col_idx,col_idx0) # append all trues
                temp_X_train = X_train.loc[:,col_idx]
                # Check if any of the other features were wrongly chosen
                for fcheck in range(len(other_feats)):
                    if any(temp_X_train.columns.str.contains(other_feats[fcheck]+"_")==True):
                        temp_X_train = temp_X_train.loc[:,np.invert(temp_X_train.columns.str.contains(other_feats[fcheck]))]
                if temp_X_train.size == 0: # if no columns are left, e.g. imcoh when removing coh, then add features again
                    temp_X_train = X_train.loc[:,X_train.columns.str.contains(temp_feat0+"_")]
                
                # Save number of original features fed into mRMR
                feat_counter.append([temp_feat,temp_X_train.shape[1]])
                # If there are no features selected, then skip the rest of the loop
                if temp_X_train.shape[1] == 0:
                    continue
                
                # Do not use mRMR if there are fewer than n_features
                if temp_X_train.shape[1] <= max_mRMR_features:
                    filter_features = temp_X_train.columns
                else:
                    # mRMR
                    filter_feat_selector = mRMR_feature_select(temp_X_train.to_numpy(),y_train.to_numpy(),
                                                                num_features_to_select=max_mRMR_features,
                                                                K_MAX=1000,n_jobs=1,verbose=False)
                    # Get selected features
                    filter_features = temp_X_train.columns[filter_feat_selector]
                
                # SVM with L2-norm (it is by default squared)
                # Prepare hyper parameters
                exponent = np.linspace(-3,1,9)
                exponent = np.round(exponent,5) # sometimes linspace are not so exact
                C_parameter_SVM = np.power(np.array([10]*len(exponent)),exponent)
                # rbf kernel overfit easier, whereas linear empirically works better in high D data
                
                # Sequential Feature Selection for Logistic Regression
                # In-built model selection CV
                # The L2 is the inverse of C for LogReg
                exponent = np.linspace(-3,1,9)
                exponent = np.round(exponent,5) # sometimes linspace are not so exact
                C_parameter_LogReg = np.power(np.array([10]*len(exponent)),exponent)
                
                # Random forest classifier
                # Prepare hyper parameters
                trees = np.array([10, 100, 500, 1000])
                depth = np.linspace(1,2,2) # using more depth leads to a lot of overfitting
                
                # Prepare arrays for validation errors
                val_err_svm = np.zeros((len(n_feat_mRMR1),len(C_parameter_SVM)))
                val_feat_svm = np.zeros((len(n_feat_mRMR1),len(C_parameter_SVM),max_mRMR_features))
                val_feat_svm.fill(np.nan)
                
                val_err_logreg = np.zeros((len(n_feat_mRMR1),len(C_parameter_LogReg)))
                val_feat_logreg = np.zeros((len(n_feat_mRMR1),len(C_parameter_LogReg),max_mRMR_features))
                val_feat_logreg.fill(np.nan)
                
                val_err_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth)))
                val_feat_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth),max_mRMR_features))
                val_feat_rf.fill(np.nan)
                val_feat_import_rf = np.zeros((len(n_feat_mRMR1),len(trees),len(depth),max_mRMR_features))
                val_feat_import_rf.fill(np.nan)
                
                min_features_to_select = 1
                
                for n1 in range(len(n_feat_mRMR1)):
                    mRMR_features1 = filter_features[0:n_feat_mRMR1[n1]]
                    # Use the selected filter features
                    temp_X_train_mRMR = temp_X_train[mRMR_features1]
                    
                    # SVM with recursive feature elemination 
                    # Stratified CV to find best regularization strength and number of features
                    # CV is built-in RFECV
                    for C in range(len(C_parameter_SVM)):
                        # Define the model
                        svc = SVC(C=C_parameter_SVM[C], kernel="linear", tol=1e-3, cache_size=4000)
                        # Perform recurive feature elimination with in-built CV
                        rfecv = RFECV(estimator=svc, n_jobs=1, scoring="balanced_accuracy",
                                      cv=Inner_CV,
                                      min_features_to_select=min_features_to_select)
                        rfecv.fit(temp_X_train_mRMR,y_train.to_numpy().ravel())
                        # Get CV score
                        err = rfecv.grid_scores_[rfecv.n_features_-min_features_to_select]
                        # Save results for hyperparameter optimization
                        val_err_svm[n1,C] = err
                        # Save the features chosen by RFE based on index from pre mRMR
                        rfe_feat_idx = np.where(X_train.columns.isin(mRMR_features1[rfecv.support_]))[0]
                        val_feat_svm[n1,C,0:len(rfe_feat_idx)] = rfe_feat_idx
                        # print("Finished SVM run {} out of {}".format(C+1,len(C_parameter_SVM)))
                    
                    # Logistic regression with sequential forward selection
                    # In-bult CV
                    k_max = np.min([temp_X_train_mRMR.shape[1],n_feat_mRMR1[n1]])
                    k_features = np.arange(1,k_max+1,1) # try up to all features
                    inner_cv_scores = np.zeros((len(C_parameter_LogReg),len(k_features)))
                    for C in range(len(C_parameter_LogReg)):
                        LogReg = LogisticRegression(penalty="l2", C=C_parameter_LogReg[C],
                                                    max_iter = 50000)
                        sfs = SFS(LogReg, k_features = (k_features[0],k_features[-1]),
                                  forward = True, scoring = "balanced_accuracy",
                                  verbose = 0, floating = False,
                                  cv = Inner_CV, n_jobs = 1)
                    
                        sfs = sfs.fit(temp_X_train_mRMR, y_train.to_numpy().ravel())
                        # Save CV scores for each SFS step
                        for feat in range(len(k_features)):
                            inner_cv_scores[C,feat] = sfs.get_metric_dict()[k_features[feat]]["avg_score"]
                        
                        # Find the best number of features
                        # I am rounding to make it more smooth and disregard small improvements
                        K = np.where(np.round(inner_cv_scores[C,:],2)==np.max(np.round(inner_cv_scores[C,:],2)))[0]
                        if len(K) > 1:
                            K = K[np.where(K == np.min(K))[0]]
                        err = inner_cv_scores[C,K]
                        # Save validation error and features
                        val_err_logreg[n1,C] = err
                        # Save the features chosen by RFE based on index from pre mRMR
                        sfs_feat_idx = np.where(X_train.columns.isin(sfs.subsets_[int(K)+1]["feature_names"]))[0] # K+1 since it starts with 1 feature
                        val_feat_logreg[n1,C,0:len(sfs_feat_idx)] = sfs_feat_idx
                        
                        # print("Finished LogReg run {} out of {}".format(C+1,len(C_parameter_LogReg)))
                    
                    # Random forest                
                    model_test_err = np.zeros((k_fold,len(trees),len(depth)))
                    RF_feat_import = np.zeros((k_fold,len(trees),len(depth),temp_X_train_mRMR.shape[1]))
                    
                    counter = 0
                    for cv in range(k_fold):
                        # Retrieve CV indices
                        train_index_rf = Inner_CV[cv][0]
                        test_index_rf = Inner_CV[cv][1]
                        # Retrieve datasets
                        X_train2 = temp_X_train_mRMR.iloc[train_index_rf]; X_test2 = temp_X_train_mRMR.iloc[test_index_rf]
                        y_train2 = y_train.to_numpy().ravel()[train_index_rf]; y_test2 = y_train.to_numpy().ravel()[test_index_rf]
                        
                        for t in range(len(trees)):
                            for d in range(len(depth)):
                                RF = RandomForestClassifier(n_estimators=trees[t], max_features="sqrt", max_depth=depth[d],
                                                            n_jobs=1, random_state=None)
                                RF.fit(X_train2.to_numpy(),y_train2)
                                # Validation error
                                RF_y = RF.predict(X_test2.to_numpy())
                                err = balanced_accuracy_score(y_test2,RF_y)
                                # Save to array
                                model_test_err[cv,t,d] = err
                                # Save feature importance array
                                RF_feat_import[cv,t,d] = RF.feature_importances_
                        counter += 1
                        # print("Finished RF run {} out of {}".format(counter, k_fold))
                    
                    # Average the errors over the CV folds
                    model_test_err_mean = np.mean(model_test_err, axis=0)
                    val_err_rf[n1,:,:] = model_test_err_mean
                    # Average the feature importances over the CV folds
                    RF_feat_import = np.mean(RF_feat_import, axis=0)
                    val_feat_import_rf[n1,:,:,0:RF_feat_import.shape[2]] = RF_feat_import
                    # Save the features used by the RF based on index from pre mRMR
                    rf_feat_idx = np.where(X_train.columns.isin(mRMR_features1))[0]
                    val_feat_rf[n1,:,:,0:len(rf_feat_idx)] = rf_feat_idx
                    
                    # Print progress
                    current_progress = (n1+1)/(len(n_feat_mRMR1))*100
                    print("Finished {}% of inner fold optimization for feat: {}".format(current_progress,temp_feat[0]))
                    
                # Choose the optimal parameters
                ### SVM
                n1, C = np.where(val_err_svm==np.max(val_err_svm))
                
                if len(C) > 1:
                    print("There are multiple SVM runs with the same validation error")
                    print("Choosing run with fewest features to alleviate overfitting")
                    rfe_feat_len = []
                    for i2 in range(len(C)):
                        n1_temp = int(n1[i2])
                        C_temp = int(C[i2])
                        temp_feats = val_feat_svm[n1_temp,C_temp][~np.isnan(val_feat_svm[n1_temp,C_temp])].astype(int)
                        rfe_feat_len.append(len(temp_feats))
                    
                    rfe_feat_min = np.where(rfe_feat_len==np.min(rfe_feat_len))[0]
                    if len(rfe_feat_min) > 1:
                        print("Multiple SVM runs with same number of fewest features")
                        print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                        C_min = np.argmin(C[rfe_feat_min])
                        n1, C = [int(n1[rfe_feat_min][C_min]),
                                        int(C[rfe_feat_min][C_min])]
                    else:
                        n1, C = [int(n1[int(rfe_feat_min)]),
                                      int(C[int(rfe_feat_min)])]
                else:
                    n1, C = [int(n1), int(C)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                C_chosen = C_parameter_SVM[C]
                
                # Save the best validation error
                val_error = val_err_svm[n1, C]
                
                # Get the subsets chosen
                chosen_feats = val_feat_svm[n1,C][~np.isnan(val_feat_svm[n1,C])].astype(int)
                rfe_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(rfe_features)
                x_train_mRMR2_rfe = X_train[rfe_features]
                
                # Fit on all training data
                model = SVC(C=C_chosen, kernel="linear", tol=1e-3, cache_size=4000)
                model = model.fit(x_train_mRMR2_rfe,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_rfe)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[rfe_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,0,:] = [train_error,val_error,test_error]
                SVM_model_par = [mRMR_chosen1,C_chosen,n_final_feat]
                SVM_model = model
                SVM_y_pred = [[model_train_y],[y_pred]]
                
                ### LogReg with SFS
                n1, C = np.where(val_err_logreg==np.max(val_err_logreg))
                if len(C) > 1:
                    print("There are multiple LogReg runs with the same validation error")
                    print("Choosing run with fewest features to alleviate overfitting")
                    sfs_feat_len = []
                    for i2 in range(len(C)):
                        n1_temp = int(n1[i2])
                        C_temp = int(C[i2])
                        temp_feats = val_feat_logreg[n1_temp,C_temp][~np.isnan(val_feat_logreg[n1_temp,C_temp])].astype(int)
                        sfs_feat_len.append(len(temp_feats))
                    
                    sfs_feat_min = np.where(sfs_feat_len==np.min(sfs_feat_len))[0]
                    if len(sfs_feat_min) > 1:
                        print("Multiple LogReg runs with same number of fewest features")
                        print("Choosing run with lowest C (highest regularization) to alleviate overfitting")
                        C_min = np.argmin(C[sfs_feat_min])
                        n1, C = [int(n1[sfs_feat_min][C_min]),
                                        int(C[sfs_feat_min][C_min])]
                    else:
                        n1, C = [int(n1[int(sfs_feat_min)]),
                                      int(C[int(sfs_feat_min)])]
                else:
                    n1, C = [int(n1), int(C)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                C_chosen = C_parameter_LogReg[C]
                
                # Save the best validation erro
                val_error = val_err_logreg[n1, C]
                
                # Get the subsets chosen
                chosen_feats = val_feat_logreg[n1,C][~np.isnan(val_feat_logreg[n1,C])].astype(int)
                sfs_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(sfs_features)
                x_train_mRMR2_sfs = X_train[sfs_features]
                
                # Fit on all training data
                model = LogisticRegression(penalty="l2", C=C_chosen, max_iter = 50000)
                model = model.fit(x_train_mRMR2_sfs,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_sfs)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[sfs_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,1,:] = [train_error,val_error,test_error]
                LogReg_model_par = [mRMR_chosen1,C_chosen,n_final_feat]
                LogReg_model = model
                LogReg_y_pred = [[model_train_y],[y_pred]]
                
                ### RF
                n1, t, d = np.where(val_err_rf==np.max(val_err_rf))
                
                if len(d) > 1:
                    print("There are multiple RF runs with the same validation error")
                    print("Choosing run with lowest depth to alleviate overfitting")
                    d_min = np.where(d==np.min(d))[0]
                    
                    if len(d_min) > 1:
                        print("Multiple RF runs with same number number of depths")
                        print("Choosing run with lowest trees to alleviate overfitting")
                        t_min = np.argmin(t[d_min]) # argmin just takes the first
                        # If there are multiple with same parameters and validation error it is most likely the same
                        n1, t, d = [int(n1[d_min][t_min]),
                                        int(t[d_min][t_min]), int(d[d_min][t_min])]
                    else:
                        n1, t, d = [int(n1[int(d_min)]),
                                      int(t[int(d_min)]), int(d[int(d_min)])]
                else:
                    n1, t, d = [int(n1), int(t), int(d)]
                
                mRMR_chosen1 = n_feat_mRMR1[n1]
                t_chosen = trees[t]
                d_chosen = depth[d]
                
                # Save the best validation error
                val_error = val_err_rf[n1, t, d]
                
                # Get the chosen features and feature importances
                chosen_feats = val_feat_rf[n1,t,d][~np.isnan(val_feat_rf[n1,t,d])].astype(int)
                rf_features = list(X_train.columns[chosen_feats])
                n_final_feat = len(rf_features)
                x_train_mRMR2_rf = X_train[rf_features]
                
                rf_feat_importances = val_feat_import_rf[n1,t,d][~np.isnan(val_feat_import_rf[n1,t,d])]
                
                # Fit on all training data
                model = RandomForestClassifier(n_estimators=t_chosen, max_features="sqrt", max_depth=d_chosen,
                                                                n_jobs=1, random_state=None)
                model = model.fit(x_train_mRMR2_rf,y_train.to_numpy().ravel())
                # Get training output
                model_train_y = model.predict(x_train_mRMR2_rf)
                # Get training error
                train_error = balanced_accuracy_score(y_train, model_train_y)
                
                # Get prediction of test data
                y_pred = model.predict(X_test[rf_features])
                # Use model to predict class on test data
                test_error = balanced_accuracy_score(y_test, y_pred)
                
                # Save or prepare to save
                accuracy_arr0[Outer_counter,fset,2,:] = [train_error,val_error,test_error]
                RF_model_par = [mRMR_chosen1,t_chosen,d_chosen]
                RF_model = model
                RF_y_pred = [[model_train_y],[y_pred]]
                
                # Save the rest
                model_par00 = [SVM_model_par,LogReg_model_par,RF_model_par]
                final_models00 = [SVM_model,LogReg_model,RF_model]
                final_features00 = [rfe_features, sfs_features, [rf_features,rf_feat_importances]]
                final_y_preds00 = [SVM_y_pred,LogReg_y_pred,RF_y_pred]
                data_splits00 = [X_train,y_train,X_test,y_test,standardizer.mean_,standardizer.scale_]
                
                # Save the results for the specific feature
                res = [temp_feat, model_par00, final_models00, final_features00, final_y_preds00, data_splits00]
                Ind_feat_clf00.append(res)
                print("Finished outer fold {} out of {} for rep: {} for feat {}".format(Outer_counter+1,k_out,rep+1,temp_feat))
            
            # Check that no features were excluded when checking for wrongly chosen
            total_features = 0
            for feat_c in range(len(feat_counter)):
                total_features += feat_counter[feat_c][1]
            assert total_features == X_train.shape[1]
            # Save results over outer folds
            Ind_feat_clf0.append(Ind_feat_clf00)
            
            print("Finished outer fold {} out of {} for rep: {} for all features".format(Outer_counter+1,k_out,rep+1))
            # Move counter
            Outer_counter += 1
        
        out = [accuracy_arr0, Ind_feat_clf0] # [Rep][Outer CV][Feature][Variable]
        # Print total progress
        print("Finished outer fold repetition {} out of {}".format(rep+1,n_repetitions))
        
        # Get current time
        c_time2 = time.localtime()
        c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
        print("Started", c_time1, "\nCurrent Time",c_time2)
        
        return rep, out
    
    Ind_feat_clf = [0]*n_repetitions
    with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
        for rep, result in executor.map(Each_feat_10rep_10x10CV, range(n_repetitions)): # Function and arguments
            Ind_feat_clf[rep] = result # [acc or parameters], for parameters: [Rep][Outer CV][Feature][Variable]
            # Save results to file and overwrite when new results arrive
            with open(Model_savepath+"Each_feat_Rep10_10x10CV_mRMR2_SVM_LogReg_RF_Subtype1_results_250122.pkl", "wb") as filehandle:
                pickle.dump(Ind_feat_clf, filehandle)
    
    # %% For subtype 2
    # The two previous sections are rerun but for subtype 2
    # The only modification was indexing the subjects
    
    # Only keep PTSD subtype 2 by dropping subtype 1
    subtype1 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==0]
    subtype2 = np.array(Subject_id)[PTSD_idx][sparcl["cs"]==1]
    EEG_features_df = EEG_features_df.set_index("Subject_ID")
    EEG_features_df = EEG_features_df.drop(subtype1)
    EEG_features_df = EEG_features_df.reset_index()
    # Check it was dropped correctly
    assert all(subtype2 == EEG_features_df.loc[EEG_features_df["Group_status"] == 1,"Subject_ID"])