Skip to content
Snippets Groups Projects
Select Git revision
  • 9eb2845862ce108b6ea3d53e9e05895c210f9ad4
  • main default protected
2 results

main.py

Blame
  • hjsc's avatar
    hjsc authored
    9eb28458
    History
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    main.py 22.72 KiB
    from numpy import array, linspace, sqrt, linalg, where
    from numpy import logical_not, logical_or, logical_and
    import scipy.signal as signal
    import scipy.io
    import ufl
    
    
    
    def sig(Vs):
        """ Conductivity function """
        # Initialization
        xy = Vs.tabulate_dof_coordinates().reshape((-1,2))
        
        N = xy[:,0].size
        
        #Test case 1:
        #a = 2.0
        #R = 0.8
        #sig = 1 + np.where(np.power(xy[:,0],2)+np.power(xy[:,1],2) <= np.power(R,2),np.exp(a-np.divide(a,1-np.divide(np.power(xy[:,0],2)+np.power(xy[:,1],2),np.power(R,2)))),0)
        
        #Test case 2:
        sig = 1 + np.where(np.power(xy[:,0]+1/2,2)+np.power(xy[:,1],2) <= np.power(0.3,2),1,0)  + np.where(np.power(xy[:,0],2)+np.power(xy[:,1]+1/2,2) <= np.power(0.1,2),1,0) + np.where(np.power(xy[:,0]-1/2,2)+np.power(xy[:,1]-1/2,2) <= np.power(0.1,2),1,0)
    
        
        sigsqrt = np.sqrt(sig)
        
        return sig,sigsqrt
    
       
    
    
    if __name__ == '__main__':
        import sys
        # Initialize numpy, IO, matplotlib
        import numpy as np
        import scipy.io as io
        #import matplotlib
        #matplotlib.use('Agg')
        import matplotlib.pyplot as plt
        from matplotlib import ticker
        #import matplotlib
        
        plt.ion()
        
        # Load 
        #import cmap as cmap
        from dolfin import __version__ as DOLFINversion
        from dolfin import TrialFunction, TestFunction, FunctionSpace, MeshFunction
        from dolfin import project, Point, triangle, MixedElement, SubDomain, Measure
        from dolfin import inner, dot, grad, dx, ds, VectorFunctionSpace, PETScLUSolver, as_backend_type
        from dolfin import Function, assemble, Expression, parameters, VectorFunctionSpace
        from dolfin import DirichletBC, as_matrix, interpolate, as_vector, UserExpression, errornorm, norm
        from dolfin import MeshFunction, cells, solve, DOLFIN_EPS, near, Constant, FiniteElement
        from mshr import generate_mesh, Circle
        
        # Load dolfin plotting
        from dolfin import plot as dolfinplot, File as dolfinFile
    
        def plotVs(vec,**kwargs):
            """ dolfin.plot-wrapper """
            fn = Function(Vs,vec)
            return dolfinplot(fn,**kwargs)
            
        def plotVs1(vec,**kwargs):
            """ dolfin.plot-wrapper """
            fn = Function(Vs1,vec)
            return dolfinplot(fn,**kwargs)
            
            
        # Define Function spaces
        
        def VSpace(mesh, degree=1): # endeligt underrum af H¹_{\diamond} funktioner i H¹ der integrerer til 0 på randen - det svarer til H¹(\Omega) x \mathbb{R}
            E1 = FiniteElement('P', triangle, degree)
            E0 = FiniteElement('R', triangle, 0)
    
            return FunctionSpace(mesh, MixedElement(E1,E0))
    
        def VsSpace(mesh, degree=1): # Corresponding to H^1
            E1 = FiniteElement('CG', triangle, degree)
            return FunctionSpace(mesh, E1)
        
        def VqSpace(mesh, degree=1): # Used for the gradients
            return VectorFunctionSpace(mesh, 'CG', degree)
            
        def Vector(V):
            return Function(V).vector()
        
        
        # Define how to calculate the gradients
        def Solver(Op):
            s = PETScLUSolver(as_backend_type(Op),'mumps') # Constructs the linear operator Ks for the  linear system Ks u = f using LU factorization, where the method 'numps' is used
            return s
        
        def GradientSolver(Vq,Vs): #Calculate derivatives on the quadrature points
            """
            Based on:
            https://fenicsproject.org/qa/1425/derivatives-at-the-quadrature-points/
            """
            uq = TrialFunction(Vq)
            vq = TestFunction(Vq)
            M = assemble(inner(uq,vq)*dx)
            femSolver = Solver(M)
        
            u = TrialFunction(Vs)
            P = assemble(inner(vq,grad(u))*dx)
    
            def GradSolver(uvec):
                gv = Vector(Vq)
                g = P*uvec
                femSolver.solve(gv, g)
                dx = Vector(Vs)
                dy = Vector(Vs)
                dx[:] = gv[0::2].copy()
                dy[:] = gv[1::2].copy()
                return dx,dy
    
            return GradSolver
        
        # Define the mesh for the unit disk:
        
        def UnitCircleMesh(n):
            C = Circle(Point(0,0),1)
            return generate_mesh(C,n)
            
        #cmaps = cmap.twilights()
    
        # ------------------------------    
        # Setup mesh and FEM-spaces
        
        parameters['allow_extrapolation'] = True
        
        #Mesh to generate the power density data:
        #Ms = 150
        Ms = 200 #For N_{medium} as in Table 2
        #Ms = 250 #For N_{large} as in Table 2
        
        m = UnitCircleMesh(Ms)
        V = VSpace(m,1) 
        Vs = VsSpace(m,1) 
        Vq = VqSpace(m,1)
        
        #Mesh to solve the inverse problem:
        #Ms2 = 100
        Ms2 = 160 #For N_{medium} as in Table 2
        #Ms2 = 200 #For N_{large} as in Table 2
        
        m2 = UnitCircleMesh(Ms2)
        #V1 = VSpace(m2,1) 
        Vs1 = VsSpace(m2,1)
        Vq1 = VqSpace(m2,1)
        
        # Gradient solver
        GradSolver = GradientSolver(Vq,Vs)
        GradSolver2 = GradientSolver(Vq1,Vs1)
        
        xy = Vs.tabulate_dof_coordinates().reshape((-1,2))
        xy2 = Vs1.tabulate_dof_coordinates().reshape((-1,2))
        
        N = xy[:,0].size
        print(N)
        N2 = xy2[:,0].size
        print(N2)
          
        # ------------------------------
        # Conductivity
        sigt = Function(Vs1)
        sigsqrtt = Vector(Vs1)
        
        sig1 = Function(Vs)
        sigsqrt1 = Function(Vs)
        
        sigt1,sigsqrtt1  = sig(Vs)
        sigt.vector()[:],sigsqrtt[:] = sig(Vs1)
        
        sig1.vector().set_local(sigt1)
        sigsqrt1.vector().set_local(sigsqrtt1)
        
        # Plot
        
        plot_settings = {
            #'levels': np.linspace(-1,2,120),
            #'levels': np.linspace(0,5,120),
            'cmap': plt.get_cmap('inferno'),
        }
    
        
        
        # ------------------------------    
        # Boundary conditions
        
        #Gamma_Mini:
        f1 = Expression('cos(std::atan2(x[1],x[0]))-(2.0*sqrt(2.0))/pi', degree=2)
        f2 = Expression('sin(std::atan2(x[1],x[0]))+(2.0*sqrt(2.0)-4.0)/pi', degree=1)
        
        #Gamma_Sma:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))-2.0/pi', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))-2.0/pi', degree=1)
        
        #Gamma_SmaMed:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))-(2.0*sqrt(2.0))/(3.0*pi)', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))-(2.0*sqrt(2.0)+4.0)/(3.0*pi)', degree=1)
        
        #Gamma_Med:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))-2.0/pi', degree=1)
        
        #Gamma_MedLar:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))+(2.0*sqrt(2.0))/(5.0*pi)', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))-(2.0*sqrt(2.0)+4.0)/(5.0*pi)', degree=1)
        
        #Gamma_Lar:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))+2.0/(3.0*pi)', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))-2.0/(3.0*pi)', degree=1)
        
        #Gamma_Huge:
        #f1 = Expression('cos(std::atan2(x[1],x[0]))+(2.0*sqrt(2.0))/(7.0*pi)', degree=2)
        #f2 = Expression('sin(std::atan2(x[1],x[0]))+(2.0*sqrt(2.0)-4.0)/(7.0*pi)', degree=1)
    
        # Defining \Gamma    
        class boundaryN(SubDomain):
        
            #\Gamma_{mini}:
            def inside(self, x, on_boundary):
                return (on_boundary and (ufl.atan_2(x[1],x[0])<(1.0/4.0)*np.pi and ufl.atan_2(x[1],x[0])>0) )
        
            #\Gamma_{small}:
            #def inside(self, x, on_boundary):
            #    return (on_boundary and (ufl.atan_2(x[1],x[0])<(1.0/2.0)*np.pi and ufl.atan_2(x[1],x[0])>0) )
                
            #\Gamma_{small}:
            #def inside(self, x, on_boundary):
            #    return (on_boundary and (ufl.atan_2(x[1],x[0])<(3.0/4.0)*np.pi and ufl.atan_2(x[1],x[0])>0) )
            
            #\Gamma_{medium}:
            #def inside(self, x, on_boundary):
            #    return (on_boundary and (ufl.atan_2(x[1],x[0])<np.pi and ufl.atan_2(x[1],x[0])>0) )
                
            #def inside(self, x, on_boundary):
            #    return (on_boundary and ((ufl.atan_2(x[1],x[0])<-3.0/4.0*np.pi and ufl.atan_2(x[1],x[0])>-np.pi)  or (ufl.atan_2(x[1],x[0])<np.pi and ufl.atan_2(x[1],x[0])>0)))
            
            #def inside(self, x, on_boundary):
            #    return (on_boundary and ((ufl.atan_2(x[1],x[0])<-1.0/2.0*np.pi and ufl.atan_2(x[1],x[0])>-np.pi)  or (ufl.atan_2(x[1],x[0])<np.pi and ufl.atan_2(x[1],x[0])>0)))
            
            #\Gamma_{large}:
            #def inside(self, x, on_boundary):
            #    return (on_boundary and ((ufl.atan_2(x[1],x[0])<-1.0/4.0*np.pi and ufl.atan_2(x[1],x[0])>-np.pi)  or (ufl.atan_2(x[1],x[0])<np.pi and ufl.atan_2(x[1],x[0])>0)))
            #def inside(self, x, on_boundary):
            #    return on_boundary
            
        
            
        bN = boundaryN()
        
        boundary_markers = MeshFunction("size_t",m,m.topology().dim()-1,0)
        boundary_markers.set_all(9999)
        bN.mark(boundary_markers,0)
        
        ds = Measure('ds', domain=m,subdomain_data=boundary_markers)
       
            
            
        def boundary2(x, on_boundary):
            return on_boundary
    
        
        
        
        (u1,c1) = TrialFunction(V)
        (v1,d1) = TestFunction(V)
        (u2,c2) = TrialFunction(V)
        (v2,d2) = TestFunction(V)
        
        
        #Defining and solving the variational equations
        a1 = (inner(sig1*grad(u1),grad(v1))+c1*v1+u1*d1)*dx
        a2 = (inner(sig1*grad(u2),grad(v2))+c2*v2+u2*d2)*dx 
        
        L1 = f1*v1*ds(0)
        L2 = f2*v2*ds(0)
        
        #L1 = f1*v1*ds
        #L2 = f2*v2*ds
        
        w1 = Function(V)
        w2 = Function(V)
        
        solve(a1 == L1,w1)
        solve(a2 == L2,w2)
        
        (u1,c1) = w1.split()
        (u2,c2) = w2.split()
        
        u1new = interpolate(u1,Vs)
        u2new = interpolate(u2,Vs)
        
        #Defining the gradients
        dU1 = GradSolver(u1new.vector())
        dU2 = GradSolver(u2new.vector())
    
        H11t = Function(Vs)
        H12t = Function(Vs)
        H22t = Function(Vs)
        
        #Compute the noise free power density data
        H11t.vector()[:]  = sig1.vector()*(dU1[0]*dU1[0]+dU1[1]*dU1[1])
        H12t.vector()[:]  = sig1.vector()*(dU1[0]*dU2[0]+dU1[1]*dU2[1])
        H22t.vector()[:]  = sig1.vector()*(dU2[0]*dU2[0]+dU2[1]*dU2[1])
     
        
        
        S11 = Function(Vs)
        S12 = Function(Vs)
        S21 = Function(Vs)
        S22 = Function(Vs)
        
        S11.vector()[:] = sigsqrt1.vector()*dU1[0]
        S21.vector()[:] = sigsqrt1.vector()*dU1[1]
        S12.vector()[:] = sigsqrt1.vector()*dU2[0]
        S22.vector()[:] = sigsqrt1.vector()*dU2[1]
        
        #Project the noisy data to the mesh for solving the inverse problem
        H11 = project(H11t,Vs1)
        H12 = project(H12t,Vs1)
        H22 = project(H22t,Vs1)
        
        H11log = Vector(Vs1)
        H11log[:] = np.log(H11.vector())
        
        H12log = Vector(Vs1)
        H12log[:] = np.sign(H12.vector())*np.log(1.0+np.abs(H12.vector())/(5e-3))
        #H12log[:] = np.sign(H12.vector())*np.log(np.abs(H12.vector()))
        
        H22log = Vector(Vs1)
        H22log[:] = np.log(H22.vector())
        
        miH11 = np.amin(H11log.get_local())
        maH11 = np.amax(H11log.get_local())
        
        plot_settingsH11 = {
            'levels': np.linspace(miH11,maH11,250),
            #'levels': np.linspace(0,5,120),
            #'cmap': plt.set_cmap('RdBu'),
            'cmap': plt.get_cmap('inferno'),
        }
        
        miH12 = np.amin(H12log.get_local())
        maH12 = np.amax(H12log.get_local())
        
        plot_settingsH12 = {
            'levels': np.linspace(miH12,maH12,250),
            #'levels': np.linspace(0,5,120),
            #'cmap': plt.set_cmap('RdBu'),
            'cmap': plt.get_cmap('inferno'),
        }
        
        miH22 = np.amin(H22log.get_local())
        maH22 = np.amax(H22log.get_local())
        
        plot_settingsH22 = {
            'levels': np.linspace(miH22,maH22,250),
            #'levels': np.linspace(0,5,120),
            #'cmap': plt.set_cmap('RdBu'),
            'cmap': plt.get_cmap('inferno'),
        }
            
        
        plt.figure(30)
        h = plotVs1(H11log,**plot_settingsH11) # dolfinplot
        plt.gca().axis('off')
        cb=plt.colorbar(h)
        cb.ax.tick_params(labelsize=20)
        tick_locator = ticker.MaxNLocator(nbins=6)
        cb.locator = tick_locator
        cb.update_ticks()
        
        for h1 in h.collections:
            h1.set_edgecolor("face")
            
        plt.savefig('H11medlog.pdf',format='pdf')
        
        plt.figure(31)
        h = plotVs1(H12log,**plot_settingsH12) # dolfinplot
        plt.gca().axis('off')
        cb=plt.colorbar(h)
        cb.ax.tick_params(labelsize=20)
        tick_locator = ticker.MaxNLocator(nbins=6)
        cb.locator = tick_locator
        cb.update_ticks()
        
        for h1 in h.collections:
            h1.set_edgecolor("face")
            
        plt.savefig('H12medlog.pdf',format='pdf')
        
        #plt.figure(32).clear()
        h = plotVs1(H22log,**plot_settingsH22) # dolfinplot
        plt.gca().axis('off')
        cb=plt.colorbar(h)
        cb.ax.tick_params(labelsize=20)
        tick_locator = ticker.MaxNLocator(nbins=6)
        cb.locator = tick_locator
        cb.update_ticks()
        
        for h1 in h.collections:
            h1.set_edgecolor("face")
            
        plt.savefig('H22medlog.pdf',format='pdf')
        
        
        
        #sys.exit()
        
        S11_1 = project(S11,Vs1)
        S12_1 = project(S12,Vs1)
        S21_1 = project(S21,Vs1)
        S22_1 = project(S22,Vs1)
        
        dt = H11.vector()*H22.vector()-H12.vector()*H12.vector()
    
        lJac = Vector(Vs1)
        lJac[:] = np.log(dt)
        
        #lJacold = Vector(Vs1)
        #lJacold[:] = np.log(dtold)
        
        midet = np.amin(dt.get_local())
        madet = np.amax(dt.get_local())
        
        plot_settingsdet = {
            'levels': np.linspace(midet,madet,250),
            #'levels': np.linspace(0,5,120),
            'cmap': plt.get_cmap('inferno'),
        }
        
        mildet = np.amin(lJac.get_local())
        maldet = np.amax(lJac.get_local())
        
        plot_settingslJac = {
            'levels': np.linspace(mildet,maldet,250),
            #'levels': np.linspace(0,5,120),
            'cmap': plt.get_cmap('inferno'),
        }
        
    
        
        #Illustrating log(det(H)):
        plt.figure(3)
        h = plotVs1(lJac,**plot_settingslJac) # dolfinplot
        plt.gca().axis('off')
        cb=plt.colorbar(h)
        cb.ax.tick_params(labelsize=20)
        tick_locator = ticker.MaxNLocator(nbins=6)
        cb.locator = tick_locator
        cb.update_ticks()
        
        for h1 in h.collections:
            h1.set_edgecolor("face")
        
            
        plt.savefig('logDetCoordMed.pdf',format='pdf') 
        
        #sys.exit()
    
        dtest = H11.vector()*H22.vector()-H12.vector()*H12.vector()
        
        print(min(dtest))
        
        d = Vector(Vs1)
        d[:] = np.sqrt(dtest)
        
        #Compute the T matrix as in section 4.3 
        T11 = np.divide(1,np.sqrt(H11.vector()))
        T12 = np.zeros(N2)
        T21 = -np.divide(H12.vector(),np.multiply(np.sqrt(H11.vector()),d))
        T22 = np.divide(np.sqrt(H11.vector()),d)
    
        H1211 = Vector(Vs1)
        H1211[:] = np.divide(H12.vector(),H11.vector())
        dH1211 = GradSolver2(H1211)
        
        #Compute the vector field V21 as in equation (4.7)
        V210 = Vector(Vs1)
        V211 = Vector(Vs1)
    
        V210[:] = -np.multiply(np.divide(H11.vector(),d),dH1211[0])
        V211[:] = -np.multiply(np.divide(H11.vector(),d),dH1211[1])
        
        ld1 = Vector(Vs1)
        ld1[:] = np.log(np.power(d,2))
        dld1 = GradSolver2(ld1)
        
        #Compute the right hand side \mathbf{F} for the Poisson equation (4.3)
        dtheta0 = Function(Vs1)
        dtheta1 = Function(Vs1)
        dtheta0.vector()[:] = (1/2)*(-V210 + (1/2)*dld1[1])
        dtheta1.vector()[:] = (1/2)*(-V211 - (1/2)*dld1[0])
        
        #Compute the true R and theta
        R11_1 = np.multiply(S11_1.vector(),T11) + np.multiply(S12_1.vector(),T12)
        R21_1 = np.multiply(S21_1.vector(),T11) + np.multiply(S22_1.vector(),T12)
        
        theta1t = Function(Vs1)
        theta1t.vector()[:] = np.angle(R11_1+np.multiply(1j,R21_1))
        
        theta1testfun = Function(Vs1)
        theta1testfun.vector()[:] = theta1t.vector()
        
        ##The modification of \theta defined in equation (5.1) when using \Gamma_{small}:
        
        #Gamma_mini:
        indBdr1tmp = np.where((np.arctan2(xy2[:,1],xy2[:,0])< np.pi/2.0) & (np.arctan2(xy2[:,1],xy2[:,0])>0.7688187211))
        
        
        indBdr1 = np.asarray(indBdr1tmp)
    
        indBdr1 = np.reshape(indBdr1,indBdr1.shape[1])
    
        
        #theta1testfun.vector()[indBdr1] = theta1testfun.vector()[indBdr1] + 2*np.pi
        theta1testfun.vector()[indBdr1] = theta1testfun.vector()[indBdr1] - 2*np.pi
        
        
        ThetFun = Function(Vs1,theta1t.vector())
        ThetFunMod = Function(Vs1,theta1testfun.vector())
        
        ##Illustration of the modification of \theta at the boundary:
        
        plt.figure(4)
        ax = plt.gca()
        Nt = 100
        ang = np.linspace(-np.pi,np.pi,Nt)
        r = 1
        bdryTf = [ThetFun(r*np.cos(t),r*np.sin(t)) for t in ang]
        bdryTfmod = [ThetFunMod(r*np.cos(t),r*np.sin(t)) for t in ang]
        ax.plot(ang, bdryTf,'b-',label=r'$\theta^c\vert_{\partial \Omega}(t)$')
        ax.plot(ang, bdryTfmod,'r--',label=r'$\tilde{\theta}^c\vert_{\partial \Omega}(t)$')
        ax.legend(loc=2,prop={'size': 16})
        #plt.yticks([-3*np.pi/2,-np.pi,-np.pi/2,0,np.pi/2, np.pi],[r'-$\frac{3\pi}{2}$',r'-$\pi$',r'-$\frac{\pi}{2}$',0,r'$\frac{\pi}{2}$',r'$\pi$'])
        plt.xticks([-np.pi,-np.pi/2,0,np.pi/2, np.pi],[r'-$\pi$',r'-$\frac{\pi}{2}$',0,r'$\frac{\pi}{2}$',r'$\pi$'])
        plt.xlabel(r'$t$',fontsize=20)
        ax.tick_params(axis='both', which='major', labelsize=20)
        plt.grid(True)
        #plt.savefig('ThetaBdrycSma2', bbox_inches="tight")
        
        for h1 in ax.collections:
            h1.set_edgecolor("face")
        
            
        plt.savefig('ThetaAdapt.pdf',format='pdf') 
        
        #sys.exit()
        
        #plot_settingsT = {
        #    'levels': np.linspace(-np.pi,np.pi,250),
        #    #'levels': np.linspace(0,5,120),
        #    'cmap': cmaps['twilight_shifted']
        #}
        
        #plt.figure(5)
        #h = plotVs1(theta1t.vector(),**plot_settings) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        ##plt.savefig('TrueThetaSmaMod')
     
        bctheta1 = DirichletBC(Vs1, theta1testfun, boundary2)
    
        theta1 = TrialFunction(Vs1)
        vt1 = TestFunction(Vs1)
        
        #Defining and solving the variational equation for the Poisson problem in (13)
        a = inner(grad(theta1),grad(vt1))*dx 
        L = inner(as_vector([dtheta0,dtheta1]),grad(vt1))*dx
        
        theta1 = Function(Vs1)
        solve(a == L,theta1,bctheta1)
        
        print((errornorm(theta1,theta1t,'L2')/norm(theta1t,'L2'))*100)
        
        #theta1.vector()[:] = theta1testfun.vector()
    
        
        cos2 = Function(Vs1)
        sin2 = Function(Vs1)
        cos2t = Function(Vs1)
        sin2t = Function(Vs1)
        cos2.vector()[:] = np.cos(2*theta1.vector())
        sin2.vector()[:] = np.sin(2*theta1.vector())
        cos2t.vector()[:] = np.cos(2*theta1t.vector())
        sin2t.vector()[:] = np.sin(2*theta1t.vector())
        
        mis2 = np.amin(cos2.vector().get_local())
        mas2 = np.amax(cos2.vector().get_local())
        
        plot_settingssin2 = {
            'levels': np.linspace(mis2,mas2,250),
            'cmap': plt.get_cmap('inferno'),
        }
        
        #plt.figure(6)
        #h = plotVs1(theta1.vector(),**plot_settings) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        #Illustrations of sin(2\theta) and its reconstructed version
        #plt.figure(6).clear()
        #h = plotVs1(sin2t.vector(),**plot_settingssin2) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        #for h1 in h.collections:
        #    h1.set_edgecolor("face")
        #    
        #plt.savefig('TrueThetaLarSin.pdf',format='pdf')
        
        #plt.figure(7).clear()
        #h = plotVs1(sin2.vector(),**plot_settingssin2) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        #for h1 in h.collections:
        #    h1.set_edgecolor("face")
            
        #plt.savefig('RecThetaLarSin.pdf',format='pdf')
        
        #print((errornorm(cos2,cos2t,'L2')/norm(cos2t,'L2'))*100)
        #print((errornorm(sin2,sin2t,'L2')/norm(sin2t,'L2'))*100)
        
        #Defining the vector fields V11 and V22 defined in equation (4.7)
        V11in = Vector(Vs1)
        V11in[:] = np.log(np.divide(1,np.sqrt(H11.vector())))
        V11 = GradSolver2(V11in)
        V22in = Vector(Vs1)
        V22in[:] = np.log(np.divide(np.sqrt(H11.vector()),d))
        V22 = GradSolver2(V22in)
        
        V22min = np.amin(V22in.get_local())
        V22max = np.amax(V22in.get_local())
        
        plot_settingsV22 = {
            'levels': np.linspace(V22min,V22max,250),
            'cmap': plt.set_cmap('inferno'),
        }
        
        #Illustration of \log(\sqrt(H11)/D) as in figure 8
        #plt.figure(11).clear()
        #h = plotVs1(V22in,**plot_settingsV22) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        #Computing the vector field \mathbf{K} for the right hand side in equation (4.4)
        Fc0 = V11[0] - V22[0] + V211
        Fc1 = -V11[1] + V22[1] + V210
            
        #Computing \mathbf{G} for the right hand side in (4.4)
        dlogA0 = Function(Vs1)
        dlogA1 = Function(Vs1)
        
        dlogA0.vector()[:] = np.multiply(np.cos(2*theta1.vector()),Fc0) - np.multiply(np.sin(2*theta1.vector()),Fc1)
        dlogA1.vector()[:] = np.multiply(np.cos(2*theta1.vector()),Fc1) + np.multiply(np.sin(2*theta1.vector()),Fc0)
        
        logAt = Function(Vs1)
        logAt.vector()[:] = np.log(sigt.vector())
        
        
        bclogA = DirichletBC(Vs1, logAt, boundary2)
        
        
        logA = TrialFunction(Vs1)
        vA = TestFunction(Vs1)
        
        #Defining and solving the variational formulation of the Poisson problem (4.5)
        aA = inner(grad(logA),grad(vA))*dx 
        LA = inner(as_vector([dlogA0,dlogA1]),grad(vA))*dx
    
        logA = Function(Vs1)
        solve(aA == LA,logA,bclogA)
        
        A = Function(Vs1)
        A.vector()[:] = np.exp(logA.vector())
        
        plot_settings4 = {
            'levels': np.linspace(0.0,5.1,250),
            'cmap': plt.set_cmap('inferno'),
        }
        
        plot_settings5 = {
            'levels': np.linspace(0.0,4.1,250),
            'cmap': plt.set_cmap('inferno'),
        }
    
        
        #plt.savefig('TrueSigma2.pdf',format='pdf')
        
        #plt.figure(9)
        #h = plotVs1(sigt.vector(),**plot_settings5) # dolfinplot
        #plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        #for h1 in h.collections:
        #    h1.set_edgecolor("face")
        #    
        #plt.savefig('TrueSigma.pdf',format='pdf')
        
        plt.figure(11)
        h = plotVs1(A.vector(),**plot_settings5) # dolfinplot
        plt.gca().axis('off')
        #cb=plt.colorbar(h)
        #cb.ax.tick_params(labelsize=20)
        #tick_locator = ticker.MaxNLocator(nbins=6)
        #cb.locator = tick_locator
        #cb.update_ticks()
        
        for h1 in h.collections:
            h1.set_edgecolor("face")
            
        plt.savefig('AdaptMini.pdf',format='pdf')
        
        #Computing the relative L2-error
        print((errornorm(A,sigt,'L2')/norm(sigt,'L2'))*100)
        
        
        #Saving the data to a file to do illustrations in Matlab
        io.savemat('AdaptMini.mat',{'xy2':xy2,
        'AdaptMedRec':A.vector().get_local(),
        'AdaptTrue': sigt.vector().get_local()})
        
        np.savez('AdaptMini.npz',xy2=xy2,A=A.vector().get_local(),sigt=sigt.vector().get_local())