Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import shutil
import os
from types import MappingProxyType
from copy import deepcopy
import torch
from skimage import io
from tqdm import tqdm
import constants
from data.common import to_array
from utils.misc import R
from utils.metrics import AverageMeter
from utils.utils import mod_crop
from .factories import (model_factory, optim_factory, critn_factory, data_factory, metric_factory)
class Trainer:
def __init__(self, model, dataset, criterion, optimizer, settings):
super().__init__()
context = deepcopy(settings)
self.ctx = MappingProxyType(vars(context))
self.phase = context.cmd
self.logger = R['LOGGER']
self.gpc = R['GPC'] # Global Path Controller
self.path = self.gpc.get_path
self.batch_size = context.batch_size
self.checkpoint = context.resume
self.load_checkpoint = (len(self.checkpoint)>0)
self.num_epochs = context.num_epochs
self.lr = float(context.lr)
self.save = context.save_on or context.out_dir
self.out_dir = context.out_dir
self.trace_freq = context.trace_freq
self.device = context.device
self.suffix_off = context.suffix_off
for k, v in sorted(self.ctx.items()):
self.logger.show("{}: {}".format(k,v))
self.model = model_factory(model, context)
self.model.to(self.device)
self.criterion = critn_factory(criterion, context)
self.criterion.to(self.device)
self.optimizer = optim_factory(optimizer, self.model.parameters(), context)
self.metrics = metric_factory(context.metrics, context)
self.train_loader = data_factory(dataset, 'train', context)
self.val_loader = data_factory(dataset, 'val', context)
self.start_epoch = 0
self._init_max_acc = 0.0
def train_epoch(self):
raise NotImplementedError
def validate_epoch(self, epoch=0, store=False):
raise NotImplementedError
def train(self):
if self.load_checkpoint:
self._resume_from_checkpoint()
max_acc = self._init_max_acc
best_epoch = self.get_ckp_epoch()
for epoch in range(self.start_epoch, self.num_epochs):
lr = self._adjust_learning_rate(epoch)
self.logger.show_nl("Epoch: [{0}]\tlr {1:.06f}".format(epoch, lr))
# Train for one epoch
self.train_epoch()
# Evaluate the model on validation set
self.logger.show_nl("Validate")
acc = self.validate_epoch(epoch=epoch, store=self.save)
is_best = acc > max_acc
if is_best:
max_acc = acc
best_epoch = epoch
self.logger.show_nl("Current: {:.6f} ({:03d})\tBest: {:.6f} ({:03d})\t".format(
acc, epoch, max_acc, best_epoch))
# The checkpoint saves next epoch
self._save_checkpoint(self.model.state_dict(), self.optimizer.state_dict(), max_acc, epoch+1, is_best)
def validate(self):
if self.checkpoint:
if self._resume_from_checkpoint():
self.validate_epoch(self.get_ckp_epoch(), self.save)
else:
self.logger.warning("no checkpoint assigned!")
def _adjust_learning_rate(self, epoch):
if self.ctx['lr_mode'] == 'step':
lr = self.lr * (0.5 ** (epoch // self.ctx['step']))
elif self.ctx['lr_mode'] == 'poly':
lr = self.lr * (1 - epoch / self.num_epochs) ** 1.1
elif self.ctx['lr_mode'] == 'const':
lr = self.lr
else:
raise ValueError('unknown lr mode {}'.format(self.ctx['lr_mode']))
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
def _resume_from_checkpoint(self):
if not os.path.isfile(self.checkpoint):
self.logger.error("=> no checkpoint found at '{}'".format(self.checkpoint))
return False
self.logger.show("=> loading checkpoint '{}'".format(
self.checkpoint))
checkpoint = torch.load(self.checkpoint)
state_dict = self.model.state_dict()
ckp_dict = checkpoint.get('state_dict', checkpoint)
update_dict = {k:v for k,v in ckp_dict.items()
if k in state_dict and state_dict[k].shape == v.shape}
num_to_update = len(update_dict)
if (num_to_update < len(state_dict)) or (len(state_dict) < len(ckp_dict)):
if self.phase == 'val' and (num_to_update < len(state_dict)):
self.logger.error("=> mismatched checkpoint for validation")
return False
self.logger.warning("warning: trying to load an mismatched checkpoint")
if num_to_update == 0:
self.logger.error("=> no parameter is to be loaded")
return False
else:
self.logger.warning("=> {} params are to be loaded".format(num_to_update))
elif (not self.ctx['anew']) or (self.phase != 'train'):
# Note in the non-anew mode, it is not guaranteed that the contained field
# max_acc be the corresponding one of the loaded checkpoint.
self.start_epoch = checkpoint.get('epoch', self.start_epoch)
self._init_max_acc = checkpoint.get('max_acc', self._init_max_acc)
if self.ctx['load_optim']:
try:
# Note that weight decay might be modified here
self.optimizer.load_state_dict(checkpoint['optimizer'])
except KeyError:
self.logger.warning("warning: failed to load optimizer parameters")
state_dict.update(update_dict)
self.model.load_state_dict(state_dict)
self.logger.show("=> loaded checkpoint '{}' (epoch {}, max_acc {:.4f})".format(
self.checkpoint, self.get_ckp_epoch(), self._init_max_acc
))
return True
def _save_checkpoint(self, state_dict, optim_state, max_acc, epoch, is_best):
state = {
'epoch': epoch,
'state_dict': state_dict,
'optimizer': optim_state,
'max_acc': max_acc
}
# Save history
history_path = self.path('weight', constants.CKP_COUNTED.format(e=epoch), underline=True)
if epoch % self.trace_freq == 0:
torch.save(state, history_path)
# Save latest
latest_path = self.path(
'weight', constants.CKP_LATEST,
underline=True
)
torch.save(state, latest_path)
if is_best:
shutil.copyfile(
latest_path, self.path(
'weight', constants.CKP_BEST,
underline=True
)
)
def get_ckp_epoch(self):
# Get current epoch of the checkpoint
# For dismatched ckp or no ckp, set to 0
return max(self.start_epoch-1, 0)
def save_image(self, file_name, image, epoch):
file_path = os.path.join(
'epoch_{}/'.format(epoch),
self.out_dir,
file_name
)
out_path = self.path(
'out', file_path,
suffix=not self.suffix_off,
auto_make=True,
underline=True
)
return io.imsave(out_path, image)
class CDTrainer(Trainer):
def __init__(self, arch, dataset, optimizer, settings):
super().__init__(arch, dataset, 'NLL', optimizer, settings)
def train_epoch(self):
losses = AverageMeter()
len_train = len(self.train_loader)
pb = tqdm(self.train_loader)
self.model.train()
for i, (t1, t2, label) in enumerate(pb):
t1, t2, label = t1.to(self.device), t2.to(self.device), label.to(self.device)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
loss = self.criterion(prob, label)
losses.update(loss.item(), n=self.batch_size)
# Compute gradients and do SGD step
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
desc = self.logger.make_desc(
i+1, len_train,
('loss', losses, '.4f')
)
pb.set_description(desc)
self.logger.dump(desc)
def validate_epoch(self, epoch=0, store=False):
self.logger.show_nl("Epoch: [{0}]".format(epoch))
losses = AverageMeter()
len_val = len(self.val_loader)
pb = tqdm(self.val_loader)
self.model.eval()
with torch.no_grad():
for i, (name, t1, t2, label) in enumerate(pb):
if self.phase == 'train' and i >= 16:
# Do not validate all images on training phase
pb.close()
self.logger.warning("validation ends early")
break
t1, t2, label = t1.to(self.device), t2.to(self.device), label.to(self.device)
prob = self.model(t1, t2)
loss = self.criterion(prob, label)
losses.update(loss.item(), n=self.batch_size)
# Convert to numpy arrays
CM = to_array(torch.argmax(prob, 1)).astype('uint8')
label = to_array(label[0]).astype('uint8')
for m in self.metrics:
m.update(CM, label)
desc = self.logger.make_desc(
i+1, len_val,
('loss', losses, '.4f'),
*(
(m.__name__, m, '.4f')
for m in self.metrics
)
)
pb.set_description(desc)
self.logger.dump(desc)
if store:
self.save_image(name[0], (CM*255).squeeze(-1), epoch)
return self.metrics[0].avg if len(self.metrics) > 0 else max(1.0 - losses.avg, self._init_max_acc)